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Abstract

Building upon the work of [SVY20] we derive generalized Dedekind sums arising from the Eichler-Shimura
isomorphism applied to holomorphic weight k ≥ 3 Eisenstein series attached to primitive non-trivial Dirichlet
characters χ1, χ2. Furthermore, we demonstrate that these generalized Dedekind sums preserve certain important
properties including a finite sum formula and a cohomological relation.

1 Introduction and Basic Definitions

The classical Dedekind sum is well studied due to its wide range of applications within mathematics and even specific
subfields of physics. For more background on classical Dedekind sums we refer the reader to [RG72], and for more
background on how the Dedekind sum appears in other areas of study we refer the reader to [Ati87].

Let h and k be coprime integers with k > 0. The classical Dedekind sum is defined as

s(h, k) =

k∑
n=1

B1

(n
k

)
B1

(
hn

k

)
,

where B1 is the first periodic Bernoulli polynomial which is defined as follows.

Definition 1.1. The periodic Bernoulli polynomials for integer k ≥ 1 are given by the formula

Bk(x) =


k∑

m=0

m∑
n=0

(−1)n
(
m

n

)
({x}+ n)k

m+ 1
x ∈ R \ Z,

0 x ∈ Z.

Recent work has further generalized the classical Dedekind sum. As stated in Theorem 1.2 of [SVY20], given
primitive non-trivial Dirichlet characters χ1 and χ2 with conductors q1 and q2 respectively such that χ1χ2(−1) =
(−1)k and

(
a b
c d

)
∈ Γ0(q1q2), we have

Sχ1,χ2,2(γ) =
∑

j mod c
n mod q1

χ1(n)χ2(j)B1

(
j

c

)
B1

(
aj

c
+
n

q1

)
.

Conveniently, Sχ1,χ2,2 satisfies an elegant crossed homomorphism relation as shown in Lemma 2.2 of [SVY20]. For
γ1, γ2 ∈ Γ0(q1q2)

Sχ1,χ2,2(γ1γ2) = Sχ1,χ2,2(γ1) + ψ(γ1)Sχ1,χ2,2(γ2)

where ψ(γ) = χ1χ2(dγ) is the central character of the weight k = 2 holomorphic Eisenstein series attached to
characters.

Definition 1.2 ([DS05], Theorem 4.5.1). The Fourier expansion for holomorphic weight k Eisenstein series attached
to primitive non-trivial Dirichlet characters χ1 and χ2 such that χ1χ2(−1) = (−1)k is given as

Eχ1,χ2,k(z) =
∑
1≤N

∑
A|N

χ1(A)χ2(N/A)(N/A)
k−1e(Nz) where e(z) = exp(2πiz).

The central character of this series is ψ = χ1χ2. Given a matrix γ ∈ Γ0(q1q2) recall that we have the relation under
Mobius transformations given by Eχ1,χ2,k(γz) = ψ(γ) j(γ, z)k Eχ1,χ2,k(z).
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The focus of this paper builds upon a small but astute observation contained within Section 5 of [SVY20]: this
generalization of the classical Dedekind sum is exactly an Eichler-Shimura type integral applied to the weight k = 2
holomorphic Eisenstein series attached to characters. Building upon this, the main goal of this work is to evaluate
this Eichler-Shimura type integral applied to weight k ≥ 3 holomorphic Eisenstein series attached to characters.
Using these calculations, we show that there are natural generalizations of Sχ1,χ2,2 to higher weight which preserve
either its finite sum expression or its crossed homomorphism relation (see Theorem 1.5 and Lemma 4.3).

To adequately define our higher weight Eichler-Shimura type integrals we need to define some polynomials.

Definition 1.3. Let us define the polynomial

Pk−2(z) = (Xz + Y )k−2 =

((
X Y

)(z
1

))k−2

.

Given a matrix γ =
(
a b
c d

)
∈ SL2(Z) we have the relation under Mobius transformations given by

Pk−2(γz) = (Xγz + Y )k−2 =

(
j(γ, z)−1

(
X Y

)(a b
c d

)(
z
1

))k−2

.

For fixed z, this polynomial Pk−2(z) is a member of Vk−2(C) which is the vector space of degree k − 2 homogeneous
polynomials in two variables having complex coefficients.

Now we define our Eichler-Shimura type integral in terms of our Eisenstein series and polynomials.

Definition 1.4. Given weight k, primitive non-trivial Dirichlet characters χ1 and χ2 with conductors q1 and q2
respectively such that χ1χ2(−1) = (−1)k, γ =

(
a b
c d

)
∈ Γ0(q1q2), and z0 = −d/c+ i/(c2u) such that γz0 = a/c+ iu;

we define ϕχ1,χ2,k(γ, Pk−2) as the Eichler-Shimura integral of Eχ1,χ2,k against the polynomial Pk−2 with base point
at ∞. That is,

ϕχ1,χ2,k(γ, Pk−2) =

∫ γ∞

∞
Eχ1,χ2,k(z)Pk−2(z) dz = lim

u→0+

∫ γz0

z0

Eχ1,χ2,k(z)Pk−2(z) dz.

This integral converges due to the exponential decay of Eχ1,χ2,k at the endpoints as seen in Definition 1.2.
By specializing the values X = 1 and Y = −a/c we have that Pk−2(z) = (z − a/c)k−2. Using this we define our

higher weight Dedekind sums in terms of this ϕ function,

Sχ1,χ2,k(γ) = (−1)kτ(χ1)(k − 1)ϕχ1,χ2,k

(
γ, (z − a/c)k−2

)
. (1)

This paper seeks to prove the following main theorem.

Theorem 1.5. For k ≥ 3, given γ =
(
a b
c d

)
∈ Γ0(q1q2) and primitive non-trivial Dirichlet characters χ1 and χ2 with

conductors q1 and q2 respectively such that χ1χ2(−1) = (−1)k, we have

Sχ1,χ2,k(γ) =
∑

j mod c
n mod q1

χ1(n)χ2(j)B1

(
j

c

)
Bk−1

(
aj

c
+
n

q1

)
.

We will prove Theorem 1.5 in Section 3. This proof loosely follows the process of [SVY20]; however, we must
first prove several analysis related results as there are significant changes to the necessary analysis required in this
Eichler-Shimura type integral formulation of our generalized Dedekind sums.

Given that Theorem 1.5 serves as a generalization of the work of [SVY20], we find that the above Dedekind sums
occupy a similar space in the wider body of literature to the Dedekind sums presented in [SVY20]. Apart from
[SVY20], we find that Nagasaka [Nag84] presents a strikingly similar Dedekind sum in two characters. Additionally,
Dağlı and Can used a similar integral-based technique to construct a Dedekind sum in two characters [DC15];
however, their integral was not of Eichler-Shimura type and instead comprised a product of Bernoulli polynomials.
Aside from these two papers a large part of the literature on Dedekind sums is based off of the work of Berndt
[Ber73] which uses a different Eisenstein-type series from the Eχ1,χ2

defined in Definition 1.2. This subsection of the
literature includes works such as [CCK07, Mey00, Sek05].

2 Preliminaries for the Proof of Theorem 1.5

Before we provide our necessary analysis, we first collect some results from the literature which we will use in many
of the following proofs. Note that in this section we impose the same restrictions on χ1, χ2, q1, q2, a, c, and u as in
Definition 1.4.
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2.1 Results from the Literature

Using the work of Berndt we define character analogues of Bernoulli polynomials.

Definition 2.1 ([Ber75], Definition 1). Given a primitive Dirichlet character χ with modulus m, for integer k ≥ 2
we define Bk−1,χ(x) using the expression

Bk−1,χ(x) =
(−i)kτ(χ)(k − 1)!

im(2π/m)k−1

∑
n̸=0

χ(n)

nk−1
em(nx).

Furthermore, we have an expression relating Bernoulli polynomials to character analogues of Bernoulli polynomials.

Lemma 2.2 ([Ber75], Theorem 3.1). Given a primitive Dirichlet character χ with modulus m, for integer k ≥ 1 we
have the following expression

Bk,χ(x) = mk−1
∑

n mod m

χ(n)Bk

(
x+ n

m

)
.

Berndt also provides us with the following character analogue of Poisson summation.

Theorem 2.3 ([Ber75], Theorem 2.3). Given a primitive Dirichlet character χ with conductor q and a function f
of bounded variation on [0,∞) we have that∑

1≤n

χ(n)f(n) =
2τ(χ)

q

∑
v∈Z

χ(v)

∫ ∞

0

f(t) e2πivt/q dt.

Finally, we use the work of Stucker, Vennos, and Young to help simplify a particular sum in Section 2.2.

Lemma 2.4 ([SVY20], Lemma 3.2). We have that∑
1≤B

χ2(B)e2πAB(ia/c−u) =
∑

j mod c

χ2(j)ec(Aaj)

(
e(Aiuj)− 1

1− e(Aiuc)

)
where ec(z) = e(z/c).

Lemma 2.5 ([SVY20], Lemma 3.3). We have that

lim
u→0+

∑
1≤B

χ2(B)e2πAB(ia/c−u) = −
∑

j mod c

χ2(j)B1

(
j

c

)
ec(Aaj).

2.2 Analysis Preliminaries

First we develop a twisted Poisson summation identity which will give us the proper convergence in future lemmas.

Lemma 2.6. For an integer K ≥ 1 and z ∈ H we have∑
1≤B

χ2(B)BKe2πABiz = 2qK2

(
τ(χ2)K!

(−2πi)K+1

)∑
v∈Z

χ2(v)

(Aq2z + v)K+1
.

Proof. Applying the formula given in Theorem 2.3 gives us∑
1≤B

χ2(B)BKe2πABiz =
2τ(χ2)

q2

∑
v∈Z

χ2(v)

∫ ∞

0

tKe(2πit/q2)(Aq2z+v) dt.

Evaluating this integral completes the proof.

A similar sum will show up in the proof of a future lemma, so we show that it is finite.

Lemma 2.7. For K > 0 and (a,Q) = 1, when Q ∤ A we have that
∑
v∈Z |Aa/Q+ v|−1−K

<∞.

Proof. Note that when Q ∤ A then∑
v∈Z

1

|Aa/Q+ v|K+1
=

∞∑
v=⌈Aa/Q⌉

1

(v −Aa/Q)K+1
+

∞∑
v=−⌊Aa/Q⌋

1

(Aa/Q+ v)K+1

= ζ(K + 1, ⌈Aa/Q⌉ −Aa/Q) + ζ(K + 1, Aa/Q− ⌊Aa/Q⌋) ≤ 2 ζ(K + 1, 1/Q) <∞

where ζ(s, a) =
∑

0≤n(n+ a)−s is the Hurwitz zeta function which converges absolutely for complex Re(s) > 1 and
real 0 < a < 1.
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We now provide a uniform bound on a particular summation.

Lemma 2.8. For integers k ≥ 3 and 0 ≤ n ≤ k − 2, given the following sum there exists a constant C(k, n, c, q2)
depending solely on k, n, c, and q2 such that we have the following uniform bound in terms of u∣∣∣∣∣∣√u

∑
1≤A

χ1(A)

An+1

∑
1≤B

χ2(B)Bk−n−2e2πAB(ia/c−u)

∣∣∣∣∣∣ < C(k, n, c, q2).

Proof. We use Lemma 2.6 to give an alternate formula for the inner sum over B; thus we have∣∣∣∣∣∣√u
∑
1≤A

χ1(A)

An+1

∑
1≤B

χ2(B)Bk−n−2e2πAB(ia/c−u)

∣∣∣∣∣∣
≤ 2qk−n−2

2

(√
q2 (k − n− 2)!

(2π)k−n−1

) ∑
1≤A

∣∣∣∣∣χ1(A)

An+1

√
u
∑
v∈Z

χ2(v)

(Aq2(a/c+ iu) + v)k−n−1

∣∣∣∣∣.
Now we will bound the summand independently of u. Let χ0 be the trivial character modulo q1. Note that∣∣∣∣∣χ1(A)

An+1

√
u
∑
v∈Z

χ2(v)

(Aq2(a/c+ iu) + v)k−n−1

∣∣∣∣∣ ≤ χ0(A)

An+1

√
u
∑
v∈Z

1

|Aq2(a/c+ iu) + v|k−n−1
.

We borrow an (Aq2u)
−1/2 from the sum by using the inequality

1

|Aq2(a/c+ iu) + v|k−n−1
≤ 1

(Aq2u)1/2|Aq2a/c+ v|k−n−3/2
.

This gives
χ0(A)

An+1

√
u
∑
v∈Z

1

|Aq2(a/c+ iu) + v|k−n−1
≤ χ0(A)√

q2An+3/2

∑
v∈Z

1∣∣Aa/(cq−1
2 ) + v

∣∣k−n−3/2
.

If q1 ∤ A, then by Lemma 2.7 we have

χ0(A)
∑
v∈Z

1∣∣Aa/(cq−1
2 ) + v

∣∣k−n−3/2
≤ 2 ζ(k − n− 3/2, q2/c).

Otherwise if q1 | A then χ0(A) = 0. Thus,

χ0(A)√
q2An+3/2

∑
v∈Z

1

|Aa/c+ v|k−n−3/2
≤ 2 ζ(k − n− 3/2, q2/c)√

q2An+3/2
.

This bounds our summand independently of u. Hence∣∣∣∣∣∣√u
∑
1≤A

χ1(A)

An+1

∑
1≤B

χ2(B)Bk−n−2e2πAB(ia/c−u)

∣∣∣∣∣∣ ≤ 4qk−n−2
2

(
(k − n− 2)!

(2π)k−n−1

) ∑
1≤A

ζ(k − n− 3/2, q2/c)

An+3/2
.

Noting that this sum converges and is solely dependent on k, n, c, and q2 completes our proof.

From Lemma 2.8 it immediately follows that the following limit vanishes.

Corollary 2.9. For integers k ≥ 3 and 0 ≤ n < k − 2 we have

lim
u→0+

uk−n−2
∑
1≤A

χ1(A)

An+1

∑
1≤B

χ2(B)Bk−n−2e2πAB(ia/c−u) = 0.

And lastly we explicitly evaluate a particular limit.

Lemma 2.10. For k ≥ 3, we have the limit

lim
u→0+

∑
1≤A

χ1(A)

Ak−1

∑
1≤B

χ2(B)e2πAB(ia/c−u) = −
∑
1≤A

∑
j mod c

χ1(A)χ2(j)

Ak−1
B1

(
j

c

)
ec(Aaj).
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Proof. First we seek to interchange this limit and sum via Tannery’s theorem, so we will bound the modulus of the
summand independently of u. Applying Lemma 2.4 to the inner sum and noting |(e(Aiuj)− 1)/(1− e(Aiuc))| ≤ 1
gives us the bound∣∣∣∣∣∣χ1(A)

Ak−1

∑
1≤B

χ2(B)e2πAB(ia/c−u)

∣∣∣∣∣∣ ≤ 1

Ak−1

∑
j mod c

∣∣∣∣χ2(j)ec(Aaj)

(
e(Aiuj)− 1

1− e(Aiuc)

)∣∣∣∣ ≤ c

Ak−1
.

Note that for k ≥ 3 we have
∑

1≤A cA
1−k = c ζ(k− 1) <∞. Thus we can interchange limits via Tannery’s theorem.

So it follows that

lim
u→0+

∑
1≤A

χ1(A)

Ak−1

∑
1≤B

χ2(B)e2πAB(ia/c−u) =
∑
1≤A

χ1(A)

Ak−1
lim
u→0+

∑
1≤B

χ2(B)e2πAB(ia/c−u).

Applying Lemma 2.5 to the limit on the right hand side completes the proof.

3 Proof of Theorem 1.5

Throughout this proof it is useful to recall that z0 = −d/c+ i/(c2u) and γz0 = a/c+ iu. We begin by substituting
Definition 1.2 into Definition 1.4; doing so gives

ϕχ1,χ2,k(γ, Pk−2) = 2 lim
u→0+

∫ γz0

z0

(Xz + Y )k−2
∑
1≤N

∑
A|N

χ1(A)χ2(N/A)(N/A)
k−1e(Nz)

 dz.

We may interchange the sums and integral due to the rapid decay of e(Nz) when Im(z) > 0; thus

ϕχ1,χ2,k(γ, Pk−2) = 2 lim
u→0+

∑
1≤N

∑
A|N

∫ γz0

z0

(Xz + Y )k−2χ1(A)χ2(N/A)(N/A)
k−1e(Nz) dz.

Using repeated integration by parts (differentiating (Xz + Y )k−2 and integrating e(Nz)), we have

ϕχ1,χ2,k(γ, Pk−2) = 2 lim
u→0+

∑
1≤N

∑
A|N

k−2∑
n=0

(
χ1(A)χ2(N/A)N

k−n−2

−Ak−1(−2πi)n+1

(
dn

dzn
(Xz + Y )k−2

)
e(Nz)

)∣∣∣∣γz0
z0

.

We have chosen z0 such that these terms evaluated at z0 vanish in the limit, thus we are left with

ϕχ1,χ2,k(γ, Pk−2) = 2 lim
u→0+

∑
1≤N

∑
A|N

k−2∑
n=0

(
χ1(A)χ2(N/A)N

k−n−2

−Ak−1(−2πi)n+1

)(
Xn(k − 2)!

(k − n− 2)!
(Xγz0 + Y )k−n−2e(Nγz0)

)
.

Interchanging the summations we write ϕχ1,χ2,k(γ, Pk−2) in the form

=

k−2∑
n=0

(
− 2Xn(k − 2)!

(−2πi)n+1(k − n− 2)!

) lim
u→0+

(Xγz0 + Y )k−n−2
∑
1≤A

χ1(A)

An+1

∑
1≤B

χ2(B)Bk−n−2e(ABγz0)

 .

Recall from (1) that Sχ1,χ2,k requires the specialization X = 1 and Y = −a/c so that Pk−2(z) = (z− a/c)k−2; doing
so gives the formula

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
=

k−2∑
n=0

(
− 2ik−n−2(k − 2)!

(−2πi)n+1(k − n− 2)!

) lim
u→0+

uk−n−2
∑
1≤A

χ1(A)

An+1

∑
1≤B

χ2(B)Bk−n−2e2πAB(ia/c−u)

 .

Corollary 2.9 implies that when k ≥ 3 and 0 ≤ n < k − 2, this limit vanishes. Thus,

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
=

(k − 2)!

πi

(
− 1

2πi

)k−2

lim
u→0+

∑
1≤A

χ1(A)

Ak−1

∑
1≤B

χ2(B)e2πAB(ia/c−u).
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In Lemma 2.10 we explicitly evaluated this limit; substituting this gives

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
= − (k − 2)!

πi

(
− 1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(j)

Ak−1

)
B1

(
j

c

)
ec(Aaj). (2)

Following the proof of Theorem 1.2 in [SVY20], we would like to use some type of symmetry relation to reindex
our sum with A running over non-zero integers. To do this, we pause the proof of Theorem 1.5 to show that

Sχ1,χ2,k(γ) =
1

2

(
Sχ1,χ2,k(γ) + χ1(−1)Sχ1,χ2,k(γ)

)
First, note that

χ2(−1)

(
(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)

)
= χ2(−1)

(
(k − 2)!

πi

)(
1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(j)

Ak−1

)
B1

(
j

c

)
ec(Aaj).

Observe that χ2(−1) = χ2(−1), B1(−x) = −B1(x), and ec(Aaj) = ec(−Aaj). So,

χ2(−1)

(
(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)

)
= − (k − 2)!

πi

(
1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(−j)

Ak−1

)
B1

(
−j
c

)
ec(−Aaj).

By sending j 7→ −j, we re-index our summation

χ2(−1)

(
(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)

)
= − (k − 2)!

πi

(
1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(j)

Ak−1

)
B1

(
j

c

)
ec(Aaj).

Removing the scalars gives us that (−1)kSχ1,χ2,k(γ) = χ2(−1)Sχ1,χ2,k(γ); thus we have the symmetric formula

Sχ1,χ2,k(γ) =
1

2

(
Sχ1,χ2,k(γ) + (−1)kχ2(−1)Sχ1,χ2,k(γ)

)
.

Recalling that χ1χ2(−1) = (−1)k gives us the desired symmetry relation.
Now we return to the proof of Theorem 1.5. Using our new symmetry relation we can rewrite (2) as

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
= −

(
(k − 2)!

2πi

)(
− 1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(j)

Ak−1

)
B1

(
j

c

)
ec(Aaj)

+ χ1(−1)

(
(k − 2)!

2πi

)(
1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(j)

Ak−1

)
B1

(
j

c

)
ec(−Aaj).

Noting that A−k+1 = (−1)−k+1(−A)−k+1, we get

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
= −

(
(k − 2)!

2πi

)(
− 1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(A)χ2(j)

Ak−1

)
B1

(
j

c

)
ec(Aaj)

−
(
(k − 2)!

2πi

)(
− 1

2πi

)k−2 ∑
1≤A

∑
j mod c

(
χ1(−A)χ2(j)

(−A)k−1

)
B1

(
j

c

)
ec(−Aaj)

Re-indexing and swapping the order of summation we have

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
= −

(
(k − 2)!

2πi

)(
− 1

2πi

)k−2 ∑
j mod c

χ2(j)B1

(
j

c

) ∑
A ̸=0

χ1(A)

Ak−1
ec(Aaj).

Recognizing the inner sum from Definition 2.1 we rewrite our expression as

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
= −

(
(k − 2)!

2πi

)(
− 1

2πi

)k−2 (
iq1(2π/q1)

k−1

(−i)kτ(χ1)(k − 1)!

) ∑
j mod c

χ2(j)B1

(
j

c

)
Bk−1,χ1

(
ajq1
c

)
.
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Now applying Lemma 2.2 gives us the equivalent expression

= −
(
(k − 2)!

2πi

)(
− 1

2πi

)k−2 (
iq1(2π/q1)

k−1

(−i)kτ(χ1)(k − 1)!

)
qk−2
1

∑
j mod c

∑
n mod q1

χ1(n)χ2(j)B1

(
j

c

)
Bk−1

(
aj

c
+
n

q1

)
.

Simplifying the leading coefficient gives

(−1)kSχ1,χ2,k(γ)

τ(χ1)(k − 1)
=

(−1)k

τ(χ1)(k − 1)

∑
j mod c
n mod q1

χ1(n)χ2(j)B1

(
j

c

)
Bk−1

(
aj

c
+
n

q1

)
.

Removing the scalar factor from both sides proves the theorem.

4 Cohomological Properties of ϕχ1,χ2,k and Sχ1,χ2,2

We seek to recover analogues of previous results involving Sχ1,χ2,2 in an effort to better understand how ϕχ1,χ2,k

an Sχ1,χ2,k behave when k ≥ 3. Recall the definition of the slash operator, as we will use this to demonstrate that
ϕχ1,χ2,k exhibits a crossed homomorphism relation similar to Lemma 2.2 of [SVY20].

Definition 4.1. Given a function f : H → C and a matrix γ ∈ SL2(Z), we define the weight k slash operator as

f |γ(z) = j(γ, z)−kf(γz),

such that weight k modular forms are invariant under the weight k slash operator.

As a formality we also endow Vk−2(C) with an implied group action.

Definition 4.2. Recall that Vk−2(C) is the vector space of degree k − 2 homogeneous polynomials in two variables

having complex coefficients. Let P (X,Y ) be a polynomial in Vk−2(C); given a central character ψ, we define V ψk−2(C)
as the same vector space of polynomials with the right group action Vk−2(C)× Γ0(q1q2) → Vk−2(C) via the map

P (X,Y ) ·
(
a b
c d

)
7→ ψ(d)P

((
X Y

)(a b
c d

))
.

It is simple to verify that this indeed forms a right group action. Note that in the case of Pk−2(z) ∈ V ψk−2(C) one has
the relation Pk−2(z) · γ = ψ(γ)Pk−2|γ(z).

Now we prove that ϕχ1,χ2,k is a crossed homomorphism.

Lemma 4.3. Suppose we have two matrices γ1, γ2 ∈ Γ0(q1q2). We have that ϕχ1,χ2,k is a crossed homomorphism,
that is to say

ϕχ1,χ2,k(γ1γ2, Pk−2) = ϕχ1,χ2,k(γ1, Pk−2) + ϕχ1,χ2,k(γ2, Pk−2 · γ1).

Proof. Noting that Eχ1,χ2,k(z)Pk−2(z) is holomorphic, by path independence we have that

ϕχ1,χ2,k(γ1γ2, Pk−2) =

∫ γ1γ2∞

∞
Eχ1,χ2,k(z)Pk−2(z) dz

=

∫ γ1∞

∞
Eχ1,χ2,k(z)Pk−2(z) dz +

∫ γ1γ2∞

γ1∞
Eχ1,χ2,k(z)Pk−2(z) dz.

We can change variables on the second integral using γ1u = z and j(γ1, u)
−2 du = dz; doing so gives∫ γ1γ2∞

γ1∞
Eχ1,χ2,k(z)Pk−2(z) dz =

∫ γ2∞

∞
j(γ1, u)

kEχ1,χ2,k|γ1(u)
(
Pk−2|γ1(u)
j(γ1, u)k−2

)(
du

j(γ1, u)2

)
=

∫ γ2∞

∞
Eχ1,χ2,k|γ1(u)Pk−2|γ1(u) du

=

∫ γ2∞

∞
ψ(γ1)Eχ1,χ2,k(u)Pk−2|γ1(u) du =

∫ γ2∞

∞
Eχ1,χ2,k(u)(Pk−2 · γ1)(u) du.
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Thus we have,

ϕχ1,χ2,k(γ1γ2, Pk−2) =

∫ γ1∞

∞
Eχ1,χ2,k(z)Pk−2(z) dz +

∫ γ2∞

∞
Eχ1,χ2,k(z)(Pk−2 · γ1)(z) dz

= ϕχ1,χ2,k(γ1, Pk−2) + ϕχ1,χ2,k(γ2, Pk−2 · γ1)

completing our proof as desired.

Remark. The above proof is standard in the literature for the Eichler-Shimura isomorphism. However, due to the
lack of accessible discussion on the Eisenstein part of the Eichler-Shimura isomorphism, we opt to explicitly describe
the crossed homomorpism as above. Given that there is little overlap between the literature on the Eichler-Shimura
isomorphism and the literature on Dedekind sums, the inclusion of this proof may help those who are unfamiliar with
the Eichler-Shimura isomorphism.

Additionally, we can view ϕχ1,χ2,k as an element of the cohomology group H1(Γ0(q1q2), V
ψ
k−2(C)).

Noting that ϕχ1,χ2,2 is independent of our choice of X and Y allows us to recover the crossed homomorphism
relation for Sχ1,χ2,2.

Corollary 4.4. We recover the cohomological properties of Sχ1,χ2,2 as in [SVY20] Lemma 2.2. Specifically we can
view Sχ1,χ2,2 as an element of the space Hom(Γ1(q1q2),C) and we have a crossed homomorphism relation for Sχ1,χ2,2

given by
Sχ1,χ2,2(γ1γ2) = Sχ1,χ2,2(γ1) + ψ(γ1)Sχ1,χ2,2(γ2).

Proof. Note that the Eichler-Shimura type integral is independent of X and Y when k = 2. So it follows if we are
given γ1, γ2 ∈ Γ0(q1q2) then we have that

ϕχ1,χ2,2(γ1, P0) =

∫ γ1∞

∞
Eχ1,χ2,2(z)(Xz + Y )0 dz =

∫ γ1∞

∞
Eχ1,χ2,2(z)(z − aγ1/cγ1)

0 dz =
(−1)k

τ(χ1)(k − 1)
Sχ1,χ2,2(γ1).

Using this independence in combination with Lemma 4.3 we have

ϕχ1,χ2,2(γ1γ2, P0) = ϕχ1,χ2,2(γ1, P0) +

∫ γ2∞

∞
ψ(γ1)Eχ1,χ2,2(z)P0|γ1(z) dz

= ϕχ1,χ2,2(γ1, P0) + ψ(γ1)

∫ γ2∞

∞
Eχ1,χ2,2(z)P0(z) dz = ϕχ1,χ2,2(γ1) + ψ(γ1)ϕχ1,χ2,2(γ2, P0).

This explicitly gives a crossed homomorphism relation for Sχ1,χ2,2 up to scalar multiple. So we have

Sχ1,χ2,2(γ1γ2) = Sχ1,χ2,2(γ1) + ψ(γ1)Sχ1,χ2,2(γ2).

Noting that ψ(γ1) is trivial on Γ1(q1q2) we also have that S2
χ1,χ2

∈ Hom(Γ1(q1q2),C). So we recover all of the results
of Lemma 2.2 in [SVY20] as desired.
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