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1 Real Analysis

1.1 Dominated Convergence

Theorem 1.1.1. Let (X, .#, 1) be a measure space and let {f,} be a sequence of integrable functions with values
in C. Suppose for g > 0, g is integrable, |fn(z)| < g(x) for all x. Now suppose that lim, o fn(x) = f(x) for all z,

then
[ @ [ ran

Dominated Convergence Example Problems (2)

Example 1.1.2 (Spring 2024, Problem 1). Let 7, f(x) = f(z — h) be the translation. Find all p € [1, o0] for which
f € LP(R) implies that limp_,q |f — Thf|Lp(R) = 0 (and justify your answer).

Solution. Suppose g is a continuous function with compact support. Then we know that for sufficiently small A
we have |1,9 — g|” < 2P|g|” which is integrable since g € LP. Since limj_,o 7,9 = g pointwise, by the dominated
convergence theorem we have that

1/p 1/p
1 — p = 1 — p =
lim (/Img gl ) (/}ng%lmg gl ) 0.

So for all continuous functions with compact support g and € > 0 there exists h such that |79 — g|| < e. If f
is not a continuous function with compact support, then there exists a continuous function g with compact support
such that ||f — ¢ p < & Then by the translation invariance of the Lebesgue measure we have

7 f = fll, < Ml f = mngll, + lmng — gll, + llg = fll, =2 = gll, + [ITng — gll,, < 3e.

1/p
lim ( [ - f|”> 0.

Example 1.1.3 (Spring 2023, Problem 3). Let f € L'([0,1]) and let f,, — f pointwise a.e. in [0, 1]. Show that

Thus we also have that

1
i, [ L4~ £~ 1ful + 17 do =0,
n—oo 0
Solution. Note that using both the triangle inequality and reverse triangle inequality

o = I = 1ful + 1A < M fn = FI= [full + 1F] < 2|1

Since f € L'([0,1]), by the above inequality we find that our integrand is suitably dominated. Since f, — f we
know that |f, — f| = 0 and |f,| — |f|. Thus ||fn — f| — |fal + |f]] = 0. So by the dominated convergence theorem

1

1 1
Jim [l = =15l = [t = A= 1 fllde = [ ode <0,



1.2 Monotone Convergence Theorem

Theorem 1.2.1. Let {f,} be a pointwise non-decreasing series of measurable functions, then we have that

lim fn:/ lim f,.

n—oo n—oo

Theorem 1.2.2. Let {f,} be a pointwise non-increasing series of measurable functions, then if fi € L' we have

n—oQ n—o0

lim | f, = / lim f,..

Monotone Convergence Theorem Example Problems (1)

Example 1.2.3 (Fall 2022, Problem 5). Prove that if f is Lebesgue integrable on A, then for all £ > 0 there exists
§ > 0 such that [, |f(z)|dz < e for all B C A with pu(B) < 4.

Solution. Let f,, = min(|f|,n) and note that |f| — |f,| — 0 pointwise monotonically decreasing. Since f € L! and
|f1] < |f| we have that |f| — |fi| € L' also. Thus by the monotone convergence theorem we have that

lim/|f|—|fn|dx:/ lim \f|—|fn|dx:/0dx:0.

Thus we can choose n sufficiently large such that

3
1= 1o < 5.

Now if we choose 6 = ¢/(2n) then we have that

e

/B\fldl“Z/B\fl—Ifn\der/Blfnldx<AIf\—Intdm+nu(B)<%Jrn(%):a.



1.3 Modes of Convergence

Modes of Convergence Example Problems (2)

Example 1.3.1 (Fall 2023, Problem 1). Let f, — f in measure on the metric space (X, u). Show there exists a
subsequence f,, such that f,, — f pointwise p a.e.

Solution. Recall that since f,, — f in measure, for all € > 0 we have
lim p({z € X ¢ |fale) — f(2)] > €}) = 0.
Thus there exists an non-decreasing sequence {ny} such that

p({z € X« |fule) = fl@) 2 k7)) < 27F

for all n > n. Now let

Ey={eeX:|fo(x)= f@)|>k""} and F=[]JE;.

Note p(Ey) < 27% and p(Fy) < 2'7F. Now let F = (N, oy Fi; then p(F) < p(Fy) < 2'7F for all k, thus pu(F) = 0.
If x € F then we have that = ¢ Fj, for some k and so z € E; for all j > k. Thus

ve{reX:|fo(@)—flx)<ji '} forall j>k
This of course implies that f,, — f pointwise for x ¢ F' which has measure zero.

Example 1.3.2 (Fall 2020, Problem 2). Let f, : R — R be a sequence of integrable functions with [, [fn| < 1.
Assume there exists an f such that f,, — f in measure. Show that there exists a subsequence f,, such that f,, — f
pointwise p a.e. and that f is integrable.

Solution. The first part of the problem follows as the one directly before this (Fall 2023, Problem 1); thus, there
exists a subsequence f,,, such that f,, — f pointwise a.e. Since there exists a subsequence f,,, — f we know that
|f| <liminf, o0 |fn]- So by Fatou’s lemma we have

/\fl S/liminf|fn\ gliminf/|fn| <1
n—oo n—00

Thus f is integrable.



1.4 Holder’s Inequality
Theorem 1.4.1. We have that

i< ([ |f|p>1/p (/ |g|Q)1/q

Holder’s Inequality Example Problems (2)

where p~t + ¢ 1 =1.

Example 1.4.2 (Spring 2021, Problem 3). Let 1 < p < oo and show that
P 1/p 1/p
([ ([ renw) aw) < [ ([ reprao)” o,
y \Jx x Uy

Example 1.4.3 (Fall 2023, Problem 2). Let a,, > 0 for n € Nand 0 < p < q.

1/q 1/p
() (29"
neN neN

Solution. 777

e Prove that

e Prove that for every N € N we have

Solution. Let b, = a,/l[|all,. Then b, <1 for all n and |[b]|, = 1. Thus

1/q
Il < (Z bﬁ) = ol =177 = 1.

neN

Thus we have

lall, = [[lall, - = el Ioll, < lall,.

= |
q

Now note that (¢/p)~! + (¢/(¢ —p))~* = 1. So by Holder’s inequality we have

N N /e , N (g=p)/q N p/q
Z ab < <Z a%) (Z lq/(q—p)> — Nl(a—p)/a (Z a%) _
n=1 n=1 n=1

n=1

Taking the p-th root gives the desired result.



1.5 Egorov’s Theorem

Theorem 1.5.1. Let f,, — [ pointwise on X. For all € > 0 there exists E C X such that w(F) < € and f, — f
uniformly on X \ E.

Egorov’s Theorem Example Problem (1)

Example 1.5.2 (Spring 2024, Problem 3). Let f,, g, be sequences of functions in L2([0,1]). For f € L?([0,1]) and
g :[0,1] = R measurable we have f, — f in ||-||, and g,, — ¢ pointwise a.e. Also assume that ||g, ||, < 1. Show that

/fngn — /fg-

/\fngn—fgl S/\fngn—fgnlJr/lfgn—fg\- (1)

Now note that by Cauchy-Schwarz and ||g,||, < 1 we have

e </|gn|2)1/2 (/Ifnf|2>1/2 < (/Ifnf|2>1/2-

Since f, — f in ||-||, we have that

1/2
nlgn;O/|fngn—fg|sn1;n;o </|fnf|2) ~0. 2)

Now note by Cauchy-Schwarz and f € L?([0,1]), there exists C' such that

/Ifgn—fg| < (/Ifz)l/2 </|gn_g|2)1/2 :c</ |gn—g|2>1/2.

Now by Egorov’s theorem we know that for all € > 0 there exists a set E C [0, 1] with u(E) < € such that g, — ¢
uniformly on [0,1] \ E. Thus we have

1/2 1/2 1/2
. . 2 . 2 . 2
lim |fg, — fg| < lim C</Igng|> C(llm/|9n9|> +C / lim |g, — g] .

Since g, — g pointwise, the integral over [0,1] \ E vanishes. Thus

1/2
. 2
h_)m |fgn_fg|§0(/|gn_g|) .
n—00 E

Recall that for all € > 0 there exists § > 0 such that pu(E) < 0 implies [}, [g, — gI> < e. Thus lim,_,o0 | fgn — fg| = 0.
Putting this together with and , we have that

Solution. First note that

lim /lfngn—fg|s lim /|fngn—fgn|+ lim /Ifgn—fg|=0-
n— 00 n—00

n—oo



1.6 Fatou’s Lemma

Lemma 1.6.1. Let f,, be a sequence of non-negative measurable functions. Then we have that

/hm inf f, < hm mf/fn
n—oo

Fatou’s Lemma Example Problems (1)

Example 1.6.2 (Fall 2022, Problem 1). Let f : [0,1] — [0, 1] be a continuous non-decreasing function with f(0) =0
and f(1) = 1. For this function, f’ exists almost everywhere on [0,1]. Let dx denote the Lebesgue measure.

e Use Fatou’s Lemma to show that fol f(x)dx < 1.

e Provide an example of a function f such that f01 f'(z) dx < 1 strictly.

Solution. Let f,(x) =n(f(r+1/n) — f(z)) onz € [0,1 —1/n) and 0 on = € [1 — 1/n,1]. Now note that

/01 @) dz = n 1;n ) dx — n/oll/n ) dz = n[l/n f@) —n Ol/n F@)dz <n <f(1> ~ f(o)) L

n n

Note that f,, — f’ pointwise on [0, 1); additionally, f, (x) is non-negative since f is non-decreasing, by Fatou’s lemma

1 1
/ f/(z)dz :/ liminf £, (z) dz < hmmf/ fo(z)dx < 1.
0 0

n—oo n—oo

An example of a function in which the strict inequality holds is the Cantor function C. This function maps [0, 1] —
[0,1], is continuous and non-decreasing, satisfies C(0) = 0 and C(1) = 1 and is differentiable almost everywhere;
however, because it has zero derivative almost everywhere we have

1
/ C'(z)dx =0 < 1.

0

Example 1.6.3 (Spring 2021, Problem 4). Let (X, B(X), 1) be a measure space. If f,, gn, f,g € L*(X, u) and

o lim, o0 frn = f and lim,, 00 g = g ace.

o |ful <gnforalneN

o lim, o [y gndx = [y gdux.
Then we have that

n—oo

lim fndac*/fdx

Solution. Note that

[o-[1=[w-1= [imistig, - £.) <timint [(g.~ 1) = [ g~ timsup [ 1,.

Additionally,
/g+/f /9+f /1iminf(gn+fn) Sliminf/(gnJrfn) :/g+hminf/fn.
n—oo n— oo n—00

Thus limsup,, . [ fn < [ f <liminf, o [ f» and the desired result follows.



1.7 Set Theory
Set Theory Example Problems (4)
Example 1.7.1 (Fall 2020, Problem 1). Let Ej be a sequence of Lebesgue measurable subsets of R. Let
E = {z € R: z € E}, for infinitely many k}.
1. Show that F is Lebesgue measurable.
2. Show that if > |Ey| < oo then |E| = 0.
3. Assume instead only that limy_, |Ex| = 0. Must |E| = 07

Solution. Suppose that

B U B

JeNk=j

we will show that this is indeed the case. Note that if z € R is in finitely many FEj, then there exists K such that
x & Ey, for all k> K. Thus ¢ € U~ ¢ Erx and so « ¢ E. If 2 € R is in infinitely many Ej, then z € Uk>j Ey, for all
7; thus, z € E. We know that Lebesgue measurable sets are closed under countable union and intersections, thus £
is Lebesgue measurable.

Let f(k,z) = 1if 2 € £} and 0 otherwise. Now let g(x) = >, .y f(k,x). Now note that
Z/ F(ky ) de = 3 | Byl < oo.
keN /R keN
Thus since f(k,x) is strictly positive, by Fubini we have
/g(m)dm: / Zf(k,x)d:v = Z/ fk,z)dx = Z|Ek| < 0.
R R ken ken /R keN

Now if we suppose that |E| > 0 then by observing that « ¢ F if and only if g(z) < oo, we arrive at a contradiction.
Thus it must be the case that |E| = 0.

No, it is not necessarily true that |F| = 0 if limg_, |Ex| = 0. Consider the typewriter sequence.
Example 1.7.2 (Spring 2021, Problem 5). Assume that F C R is Lebesgue measurable and 0 < m(F) < co.

e Show that if F is bounded and m(E) = p > 0, then for each ¢ € (0,p) there exists a measurable B C E with
measure q.

e Prove that for any 0 < o < 1 there exists an open interval such that

am(I) <m(ENI).

Solution. Let f(z) = m(E N (—o0,)), note that this function is continuous. Since E is bounded we know there
exists M such that |z| > M implies ¢ ¢ E. Thus f(—=M) = 0 and f(M) = m(E) = p. By the intermediate value
theorem there exists an x with |z| < M such that f(z) = ¢ for all ¢ € (0, p).

By the Lebesgue density theorem we know there exists a point z € E such that

m(EN(xz—r,z+7))

r—ot  m((zx —r,z+71))
Thus for all 0 < a < 1 there exists sufficiently small r such that

m(EN(x—r,z+r))

m((z —r,x+7)) =

Rearranging this inequality gives the desired result.



Example 1.7.3 (Spring 2022, Problem 3/Fall 2024, Problem 2). Let m denote the Lebesgue measure on R and let
I =[0,1]. Decide whether the sets below are closed in L!(I,m) where

A:{feLl(I,m):/I|f(ac)|2dm>1} and B:{feLl(I,m):/I|f(x)|2dm<1}.

Solution. Consider the sequence of functions

m){ﬁ O<z<lfn

0 otherwise

Note that f, — f =0 in L*(I,m). We have that

/ fa@Pdm=1  but / @) dm =0,
I I

Thus A is not closed since f,, — f in L'(I,m) with all f,, € L'(I,m) but f & L*(I,m).
We will now prove that B is closed. First note that convergence of f, — f in L*(I,m) implies that f2 — f2 in
measure. By the definition of lim inf there exists a subsequence fﬁk such that

lim inf f2 dm = liminf [ f2dm.
k—o0 n—oo [y

By Theorem 2.30 in Folland, we know there exists fﬁk which converges almost everywhere to f2. Thus by Fatou’s
J

lemma we have

/f2 dm = hmlnf f2 . dm < hmmf/f,%kj = liminf/lfz dm < 1.

j—00 n—00

Thus B is closed in L*(I,m).

Example 1.7.4 (Fall 2024, Problem 4). Let p* denote Lebesgue outer measure on R. Let A and B be any two
subsets of R that are seperated by a positive distance d. That is, if a € A and b € B then |a — b| > d > 0. Show that

1 (AU B) = i (A) + p*(B).

Solution. Since A and B are separated by some non-zero distance, we know that AN B = (the closure of A
intersect B is empty). Additionally, since A is closed, we know it is Lebesgue measurable, which means it satisfies
Caratheodory’s criterion.

i(AUB) = u* (AU B)N4A) + 1" (AU B) N (R \ A))
— 1 (ANA) U (BNA) + 1 (AN R\ A) U (BN (R D))
— u*(AUD) + " (WU B)
— 1*(A) + ' (B)



1.8 Other

Other Example Problems (4)

Example 1.8.1 (Fall 2020, Problem 4). Construct a non-decreasing function f : (0,1) — R whose discontinuity set
is exactly QN (0,1) or prove that such a function does not exist.

Solution. We know that QN (0,1) is countably infinite, thus there exists a bijection g : N — QN (0,1). Now let
F:(0,1) =R via  fa)= > 27"
g(n)<wz

Since the series > 27™ is absolutely convergent, we know that any rearrangement of the series converges as well.
Thus, f is well defined on (0, 1) and it is non-decreasing. If © < y and g(n) < x then g(n) < y; thus,

fy) =f@)+ > 277> f(a).

r<g(n)<y
Additionally, it is clear that f is discontinuous on Q N (0, 1).
Example 1.8.2 (Fall 2023, Problem 3). Show that if f(z,y) = ye~1+*)%" then

/Ow/owf(f,y)dxdy:/OOO/OOOf(x’y)dydx'

/]Re_””2 = /7.

Solution. Since f(x,y) is strictly positive, we know that if either integral converges, then they are necessarily equal
by Fubini. Note that

[eS) [eS) _(1+x2) o2 du de — 1 /OO /OO _(1+$2) gy de — 1 /00 dz - z
ye ydr = e wdr = — =
/0 /0 2Jo Jo 2 )y 1422 4

o0 o0 o0 o0 T
//f(%y)dxdy:/ / flay)dyde = 7.
o Jo o Jo

Now note that

oo poo 0 o oo oo o 2
T / / fla,y)dedy = / ye_y2 / e~ (@) gy dy = / eV / e du dy = (/ e dx) .
4 o Jo 0 0 0 0 0

Thus since exp(—xQ) is symmetric in x we have

\/’TT—/ eiw2d$ = /671:2 dm:ﬁ
2 0 R

Example 1.8.3 (Spring 2024, Problem 2). Let f, : [0,1] — R be a sequence of measurable functions with | f,, (z)] < 1
for a.e. x. Let

Use this to show that

Thus,

gn(z) = / fa(t)dt
0
Show that there exists an absolutely continuous g and a subsequence nj — oo such that g,, — g in C([0,1]).

Solution. Note that

l9n(2)] = \/wana)dt\ < [(noraes ["ae -

Thus |g,(2)| < z uniformly in n. Similarly,
y y y
/ fn(t)dt‘g/ \fn(t)|dt§/ dt =y —x.

Thus |g»(y) — gn(z)| < |y — 2| uniformly in n. Since the g, are uniformly bounded and equicontinuous, by Arzela-
Ascoli we know there exists a subsequence ny such that g,, — ¢ uniformly where g is in C([0,1]). Since g, is the
integral of an L' function, it is absolutely continuous. Since g is the uniform limit of absolutely continuous functions,
it is absolutely continuous.

l9n(y) — gn(z)| =

10



Example 1.8.4 (Fall 2024, Problem 1). Let (X, p) be a metric space
e Suppose that (X, p) is separable. Prove that if Y C X then (Y] p) is separable also.

e Suppose that (X, p) is compact. Let F be any set of real valued functions on X that is uniformly bounded and
equicontinuous. Is the function g(x) = sup;c f(z) necessarily continuous?

Solution. Let p(z,Y) = inf{p(z,y) : y € Y}. Since (X, p) is separable there exists a countable dense subset D C X.
Now for each d € D let us choose eq,, € Y such that p(d,eq,) < p(d,Y) 4+ 1/n. Now define

E = U U €d,n-

deD neN

Note that E is a countable set since it is a countable union of countable sets.
Now let e > 0 and y € Y. Since D is a dense subset of X and Y C X, there exists d € D with p(y,d) < e. Thus,
p(d,Y) < e certainly. By construction of E we also know there exists e € E such that p(d,e) < p(d,Y’) + €. Thus,

p(y.e) < p(y,d) + p(d,e) < p(y,d) + p(d,Y) + & < 3e.

So E is a dense subset of Y.
Thus F is a countably dense subset of Y and so it follows that (Y, p) is separable.

Since F is equicontinuous, we know that for all € > 0 there exists 6 > 0 such that |z —y| <0 = |f(z) — f(y)| <e
for all f € F. Thus we have

f@)<fly)+e<gly)+e and  f(y) < f(z) +e<g(x)+e.

So we have that

g(w) = sup f(z) <sup(g(y) +¢) =g(y)+e and  g(y) = sup f(y) < sup(g(z) +¢) =g(z) +e.
feF feF fEF feF

Thus [z —y| <d = |g(x) — g(y)| < € as desired.

Example 1.8.5 (Fall 2021, Problem 1). For a sequence of real numbers {a,, }, write down the definition of lim sup,,_, . ax.
Prove that for any sequence of Lebesgue measurable functions {f,,} we have that f = limsup,,_,. fn is Lebesgue
measurable also.

Solution. Recall that limsup,, . an, = lim, (supmz“ an) = inf,,>o (supmz” a”).

Let f; = infpen frn and fs = sup,cy fn. Note that

fit(=oosa) = fa M ([=o0s2))  and  f7 (@ 00]) = (£ (o).

Since each f, is measurable we know that f, '([~oo,)) and f; *((2,00]) are measurable. Since f;'([—o0,z)) and
Y ((z,00]) are a countable union of measurable sets, they are both measurable. Thus f; and f, are measurable
functions, so the infinmum and supremum of a family of measurable functions is itself measurable.

Since limsup,,_, o, fn = infp>0 (Sup,,>, fn), it follows that limsup,,_, ., f» is measurable.

11
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