
Real Analysis Qualifying Exam Prep

Preston Tranbarger

Winter 2024-2025

Contents

1 Real Analysis 2
1.1 Dominated Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Monotone Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Modes of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Holder’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Egorov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Fatou’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1



1 Real Analysis

1.1 Dominated Convergence

Theorem 1.1.1. Let (X,M , µ) be a measure space and let {fn} be a sequence of integrable functions with values
in C. Suppose for g ≥ 0, g is integrable, |fn(x)| ≤ g(x) for all x. Now suppose that limn→∞ fn(x) = f(x) for all x,
then ∫

X

fn(x) dµ =

∫
X

f dµ.

Dominated Convergence Example Problems (2)

Example 1.1.2 (Spring 2024, Problem 1). Let τhf(x) = f(x− h) be the translation. Find all p ∈ [1,∞] for which
f ∈ Lp(R) implies that limh→0 |f − τhf |Lp(R) = 0 (and justify your answer).

Solution. Suppose g is a continuous function with compact support. Then we know that for sufficiently small h
we have |τhg − g|p ≤ 2p|g|p which is integrable since g ∈ Lp. Since limh→0 τhg = g pointwise, by the dominated
convergence theorem we have that

lim
h→0

(∫
|τhg − g|p

)1/p

=

(∫
lim
h→0

|τhg − g|p
)1/p

= 0.

So for all continuous functions with compact support g and ε > 0 there exists h such that ∥τhg − g∥ < ε. If f
is not a continuous function with compact support, then there exists a continuous function g with compact support
such that ∥f − g∥p < ε. Then by the translation invariance of the Lebesgue measure we have

∥τhf − f∥p ≤ ∥τhf − τhg∥p + ∥τhg − g∥p + ∥g − f∥p = 2 ∥f − g∥p + ∥τhg − g∥p < 3ε.

Thus we also have that

lim
h→0

(∫
|τhf − f |p

)1/p

= 0.

Example 1.1.3 (Spring 2023, Problem 3). Let f ∈ L1([0, 1]) and let fn → f pointwise a.e. in [0, 1]. Show that

lim
n→∞

∫ 1

0

||fn − f | − |fn|+ |f || dx = 0.

Solution. Note that using both the triangle inequality and reverse triangle inequality

||fn − f | − |fn|+ |f || ≤ ||fn − f | − |fn||+ |f | ≤ 2|f |.

Since f ∈ L1([0, 1]), by the above inequality we find that our integrand is suitably dominated. Since fn → f we
know that |fn − f | → 0 and |fn| → |f |. Thus ||fn − f | − |fn|+ |f || → 0. So by the dominated convergence theorem

lim
n→∞

∫ 1

0

||fn − f | − |fn|+ |f || dx =

∫ 1

0

lim
n→∞

||fn − f | − |fn|+ |f || dx =

∫ 1

0

0 dx = 0.
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1.2 Monotone Convergence Theorem

Theorem 1.2.1. Let {fn} be a pointwise non-decreasing series of measurable functions, then we have that

lim
n→∞

∫
fn =

∫
lim
n→∞

fn.

Theorem 1.2.2. Let {fn} be a pointwise non-increasing series of measurable functions, then if f1 ∈ L1 we have

lim
n→∞

∫
fn =

∫
lim
n→∞

fn.

Monotone Convergence Theorem Example Problems (1)

Example 1.2.3 (Fall 2022, Problem 5). Prove that if f is Lebesgue integrable on A, then for all ε > 0 there exists
δ > 0 such that

∫
B
|f(x)| dx < ε for all B ⊆ A with µ(B) < δ.

Solution. Let fn = min(|f |, n) and note that |f | − |fn| → 0 pointwise monotonically decreasing. Since f ∈ L1 and
|f1| ≤ |f | we have that |f | − |f1| ∈ L1 also. Thus by the monotone convergence theorem we have that

lim
n→∞

∫
A

|f | − |fn| dx =

∫
A

lim
n→∞

|f | − |fn| dx =

∫
A

0 dx = 0.

Thus we can choose n sufficiently large such that∫
A

|f | − |fn| dx <
ε

2
.

Now if we choose δ = ε/(2n) then we have that∫
B

|f | dx =

∫
B

|f | − |fn| dx+

∫
B

|fn| dx <

∫
A

|f | − |fn| dx+ nµ(B) <
ε

2
+ n

( ε

2n

)
= ε.
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1.3 Modes of Convergence

Modes of Convergence Example Problems (2)

Example 1.3.1 (Fall 2023, Problem 1). Let fn → f in measure on the metric space (X,µ). Show there exists a
subsequence fnk

such that fnk
→ f pointwise µ a.e.

Solution. Recall that since fn → f in measure, for all ε > 0 we have

lim
n→∞

µ({x ∈ X : |fn(x)− f(x)| ≥ ε}) = 0.

Thus there exists an non-decreasing sequence {nk} such that

µ({x ∈ X : |fn(x)− f(x)| ≥ k−1}) < 2−k

for all n ≥ nk. Now let

Ek = {x ∈ X : |fnk
(x)− f(x)| ≥ k−1} and Fk =

∞⋃
j=k

Ej .

Note µ(Ek) < 2−k and µ(Fk) < 21−k. Now let F =
⋂

k∈N Fk; then µ(F ) ≤ µ(Fk) < 21−k for all k, thus µ(F ) = 0.
If x ̸∈ F then we have that x ̸∈ Fk for some k and so x ̸∈ Ej for all j ≥ k. Thus

x ∈ {x ∈ X :
∣∣fnj

(x)− f(x)
∣∣ < j−1} for all j ≥ k.

This of course implies that fnk
→ f pointwise for x ̸∈ F which has measure zero.

Example 1.3.2 (Fall 2020, Problem 2). Let fn : R → R be a sequence of integrable functions with
∫
R |fn| ≤ 1.

Assume there exists an f such that fn → f in measure. Show that there exists a subsequence fnk
such that fnk

→ f
pointwise µ a.e. and that f is integrable.

Solution. The first part of the problem follows as the one directly before this (Fall 2023, Problem 1); thus, there
exists a subsequence fnk

such that fnk
→ f pointwise a.e. Since there exists a subsequence fnk

→ f we know that
|f | ≤ lim infn→∞ |fn|. So by Fatou’s lemma we have∫

|f | ≤
∫

lim inf
n→∞

|fn| ≤ lim inf
n→∞

∫
|fn| ≤ 1.

Thus f is integrable.
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1.4 Holder’s Inequality

Theorem 1.4.1. We have that ∫
|fg| ≤

(∫
|f |p

)1/p(∫
|g|q
)1/q

where p−1 + q−1 = 1.

Holder’s Inequality Example Problems (2)

Example 1.4.2 (Spring 2021, Problem 3). Let 1 ≤ p < ∞ and show that(∫
Y

(∫
X

F (x, y) dµ(x)

)p

dν(y)

)1/p

≤
∫
X

(∫
Y

F (x, y)p dν(y)

)1/p

dµ(x).

Solution. ???

Example 1.4.3 (Fall 2023, Problem 2). Let an ≥ 0 for n ∈ N and 0 < p < q.

• Prove that (∑
n∈N

aqn

)1/q

≤

(∑
n∈N

apn

)1/p

.

• Prove that for every N ∈ N we have (
N∑

n=1

apn

)1/p

≤ N
1
p−

1
q

(
N∑

n=1

aqn

)1/q

.

Solution. Let bn = an/∥a∥p. Then bn ≤ 1 for all n and ∥b∥p = 1. Thus

∥b∥q ≤

(∑
n∈N

bpn

)1/q

= ∥b∥p/qp = 1p/q = 1.

Thus we have
∥a∥q =

∥∥∥∥a∥p · b∥∥∥
q
= ∥a∥p∥b∥q ≤ ∥a∥p.

Now note that (q/p)−1 + (q/(q − p))−1 = 1. So by Holder’s inequality we have

N∑
n=1

apn ≤

(
N∑

n=1

aqn

)p/q ( N∑
n=1

1q/(q−p)

)(q−p)/q

= N (q−p)/q

(
N∑

n=1

aqn

)p/q

.

Taking the p-th root gives the desired result.
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1.5 Egorov’s Theorem

Theorem 1.5.1. Let fn → f pointwise on X. For all ε > 0 there exists E ⊆ X such that µ(E) < ε and fn → f
uniformly on X \ E.

Egorov’s Theorem Example Problem (1)

Example 1.5.2 (Spring 2024, Problem 3). Let fn, gn be sequences of functions in L2([0, 1]). For f ∈ L2([0, 1]) and
g : [0, 1] → R measurable we have fn → f in ∥·∥2 and gn → g pointwise a.e. Also assume that ∥gn∥2 ≤ 1. Show that∫

fngn →
∫

fg.

Solution. First note that ∫
|fngn − fg| ≤

∫
|fngn − fgn|+

∫
|fgn − fg|. (1)

Now note that by Cauchy-Schwarz and ∥gn∥2 ≤ 1 we have∫
|fngn − fg| ≤

(∫
|gn|2

)1/2(∫
|fn − f |2

)1/2

≤
(∫

|fn − f |2
)1/2

.

Since fn → f in ∥·∥2 we have that

lim
n→∞

∫
|fngn − fg| ≤ lim

n→∞

(∫
|fn − f |2

)1/2

= 0. (2)

Now note by Cauchy-Schwarz and f ∈ L2([0, 1]), there exists C such that∫
|fgn − fg| ≤

(∫
|f |2

)1/2(∫
|gn − g|2

)1/2

= C

(∫
|gn − g|2

)1/2

.

Now by Egorov’s theorem we know that for all ε > 0 there exists a set E ⊆ [0, 1] with µ(E) < ε such that gn → g
uniformly on [0, 1] \ E. Thus we have

lim
n→∞

|fgn − fg| ≤ lim
n→∞

C

(∫
|gn − g|2

)1/2

= C

(
lim
n→∞

∫
E

|gn − g|2
)1/2

+ C

(∫
[0,1]\E

lim
n→∞

|gn − g|2
)1/2

.

Since gn → g pointwise, the integral over [0, 1] \ E vanishes. Thus

lim
n→∞

|fgn − fg| ≤ C

(∫
E

|gn − g|2
)1/2

.

Recall that for all ε > 0 there exists δ > 0 such that µ(E) < δ implies
∫
E
|gn − g|2 < ε. Thus limn→∞ |fgn − fg| = 0.

Putting this together with (1) and (2), we have that

lim
n→∞

∫
|fngn − fg| ≤ lim

n→∞

∫
|fngn − fgn|+ lim

n→∞

∫
|fgn − fg| = 0.
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1.6 Fatou’s Lemma

Lemma 1.6.1. Let fn be a sequence of non-negative measurable functions. Then we have that∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Fatou’s Lemma Example Problems (1)

Example 1.6.2 (Fall 2022, Problem 1). Let f : [0, 1] → [0, 1] be a continuous non-decreasing function with f(0) = 0
and f(1) = 1. For this function, f ′ exists almost everywhere on [0, 1]. Let dx denote the Lebesgue measure.

• Use Fatou’s Lemma to show that
∫ 1

0
f ′(x) dx ≤ 1.

• Provide an example of a function f such that
∫ 1

0
f ′(x) dx < 1 strictly.

Solution. Let fn(x) = n (f(x+ 1/n)− f(x)) on x ∈ [0, 1− 1/n) and 0 on x ∈ [1− 1/n, 1]. Now note that∫ 1

0

fn(x) dx = n

∫ 1

1/n

f(x) dx− n

∫ 1−1/n

0

f(x) dx = n

∫ 1

1−1/n

f(x)− n

∫ 1/n

0

f(x) dx ≤ n

(
f(1)

n
− f(0)

n

)
= 1.

Note that fn → f ′ pointwise on [0, 1); additionally, fn(x) is non-negative since f is non-decreasing, by Fatou’s lemma∫ 1

0

f ′(x) dx =

∫ 1

0

lim inf
n→∞

fn(x) dx ≤ lim inf
n→∞

∫ 1

0

fn(x) dx ≤ 1.

An example of a function in which the strict inequality holds is the Cantor function C. This function maps [0, 1] →
[0, 1], is continuous and non-decreasing, satisfies C(0) = 0 and C(1) = 1 and is differentiable almost everywhere;
however, because it has zero derivative almost everywhere we have∫ 1

0

C ′(x) dx = 0 < 1.

Example 1.6.3 (Spring 2021, Problem 4). Let (X,B(X), µ) be a measure space. If fn, gn, f, g ∈ L1(X,µ) and

• limn→∞ fn = f and limn→∞ gn = g a.e.

• |fn| ≤ gn for all n ∈ N

• limn→∞
∫
X
gn dx =

∫
X
g dx.

Then we have that

lim
n→∞

∫
X

fn dx =

∫
f dx

Solution. Note that∫
g −

∫
f =

∫
(g − f) =

∫
lim inf
n→∞

(gn − fn) ≤ lim inf
n→∞

∫
(gn − fn) =

∫
g − lim sup

n→∞

∫
fn.

Additionally, ∫
g +

∫
f =

∫
(g + f) =

∫
lim inf
n→∞

(gn + fn) ≤ lim inf
n→∞

∫
(gn + fn) =

∫
g + lim inf

n→∞

∫
fn.

Thus lim supn→∞
∫
fn ≤

∫
f ≤ lim infn→∞

∫
fn and the desired result follows.
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1.7 Set Theory

Set Theory Example Problems (4)

Example 1.7.1 (Fall 2020, Problem 1). Let Ek be a sequence of Lebesgue measurable subsets of R. Let

E = {x ∈ R : x ∈ Ek for infinitely many k}.

1. Show that E is Lebesgue measurable.

2. Show that if
∑

|Ek| < ∞ then |E| = 0.

3. Assume instead only that limk→∞ |Ek| = 0. Must |E| = 0?

Solution. Suppose that

E =
⋂
j∈N

⋃
k≥j

Ek,

we will show that this is indeed the case. Note that if x ∈ R is in finitely many Ek, then there exists K such that
x ̸∈ Ek for all k ≥ K. Thus x ̸∈

⋃
k≥K Ek and so x ̸∈ E. If x ∈ R is in infinitely many Ek, then x ∈

⋃
k≥j Ek for all

j; thus, x ∈ E. We know that Lebesgue measurable sets are closed under countable union and intersections, thus E
is Lebesgue measurable.

Let f(k, x) = 1 if x ∈ Ek and 0 otherwise. Now let g(x) =
∑

k∈N f(k, x). Now note that∑
k∈N

∫
R
f(k, x) dx =

∑
k∈N

|Ek| < ∞.

Thus since f(k, x) is strictly positive, by Fubini we have∫
R
g(x) dx =

∫
R

∑
k∈N

f(k, x) dx =
∑
k∈N

∫
R
f(k, x) dx =

∑
k∈N

|Ek| < ∞.

Now if we suppose that |E| > 0 then by observing that x ̸∈ E if and only if g(x) < ∞, we arrive at a contradiction.
Thus it must be the case that |E| = 0.

No, it is not necessarily true that |E| = 0 if limk→∞ |Ek| = 0. Consider the typewriter sequence.

Example 1.7.2 (Spring 2021, Problem 5). Assume that E ⊆ R is Lebesgue measurable and 0 < m(E) < ∞.

• Show that if E is bounded and m(E) = p > 0, then for each q ∈ (0, p) there exists a measurable B ⊆ E with
measure q.

• Prove that for any 0 < α < 1 there exists an open interval such that

αm(I) ≤ m(E ∩ I).

Solution. Let f(x) = m(E ∩ (−∞, x)), note that this function is continuous. Since E is bounded we know there
exists M such that |x| > M implies x ̸∈ E. Thus f(−M) = 0 and f(M) = m(E) = p. By the intermediate value
theorem there exists an x with |x| ≤ M such that f(x) = q for all q ∈ (0, p).

By the Lebesgue density theorem we know there exists a point x ∈ E such that

lim
r→0+

m(E ∩ (x− r, x+ r))

m((x− r, x+ r))
= 1.

Thus for all 0 < α < 1 there exists sufficiently small r such that

m(E ∩ (x− r, x+ r))

m((x− r, x+ r))
> α.

Rearranging this inequality gives the desired result.
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Example 1.7.3 (Spring 2022, Problem 3/Fall 2024, Problem 2). Let m denote the Lebesgue measure on R and let
I = [0, 1]. Decide whether the sets below are closed in L1(I,m) where

A =

{
f ∈ L1(I,m) :

∫
I

|f(x)|2 dm ≥ 1

}
and B =

{
f ∈ L1(I,m) :

∫
I

|f(x)|2 dm ≤ 1

}
.

Solution. Consider the sequence of functions

fn(x) =

{√
n 0 ≤ x < 1/n

0 otherwise
.

Note that fn → f = 0 in L1(I,m). We have that∫
I

|fn(x)|2 dm = 1 but

∫
I

|f(x)|2 dm = 0.

Thus A is not closed since fn → f in L1(I,m) with all fn ∈ L1(I,m) but f ̸∈ L1(I,m).
We will now prove that B is closed. First note that convergence of fn → f in L1(I,m) implies that f2

n → f2 in
measure. By the definition of lim inf there exists a subsequence f2

nk
such that

lim inf
k→∞

∫
I

f2
nk

dm = lim inf
n→∞

∫
I

f2
n dm.

By Theorem 2.30 in Folland, we know there exists f2
nkj

which converges almost everywhere to f2. Thus by Fatou’s

lemma we have ∫
I

f2 dm =

∫
I

lim inf
j→∞

f2
nkj

dm ≤ lim inf
j→∞

∫
I

f2
nkj

= lim inf
n→∞

∫
I

f2
n dm ≤ 1.

Thus B is closed in L1(I,m).

Example 1.7.4 (Fall 2024, Problem 4). Let µ∗ denote Lebesgue outer measure on R. Let A and B be any two
subsets of R that are seperated by a positive distance d. That is, if a ∈ A and b ∈ B then |a− b| ≥ d > 0. Show that

µ∗(A ∪B) = µ∗(A) + µ∗(B).

Solution. Since A and B are separated by some non-zero distance, we know that A ∩ B = ∅ (the closure of A
intersect B is empty). Additionally, since A is closed, we know it is Lebesgue measurable, which means it satisfies
Caratheodory’s criterion.

µ∗(A ∪B) = µ∗((A ∪B) ∩A) + µ∗((A ∪B) ∩ (R \A))

= µ∗((A ∩A) ∪ (B ∩A)) + µ∗((A ∩ (R \A)) ∪ (B ∩ (R \A)))

= µ∗(A ∪ ∅) + µ∗(∅ ∪B)

= µ∗(A) + µ∗(B).
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1.8 Other

Other Example Problems (4)

Example 1.8.1 (Fall 2020, Problem 4). Construct a non-decreasing function f : (0, 1) → R whose discontinuity set
is exactly Q ∩ (0, 1) or prove that such a function does not exist.

Solution. We know that Q ∩ (0, 1) is countably infinite, thus there exists a bijection g : N → Q ∩ (0, 1). Now let

f : (0, 1) → R via f(x) =
∑

g(n)≤x

2−n.

Since the series
∑

2−n is absolutely convergent, we know that any rearrangement of the series converges as well.
Thus, f is well defined on (0, 1) and it is non-decreasing. If x ≤ y and g(n) ≤ x then g(n) ≤ y; thus,

f(y) = f(x) +
∑

x<g(n)≤y

2−n ≥ f(x).

Additionally, it is clear that f is discontinuous on Q ∩ (0, 1).

Example 1.8.2 (Fall 2023, Problem 3). Show that if f(x, y) = ye−(1+x2) y2

then∫ ∞

0

∫ ∞

0

f(x, y) dx dy =

∫ ∞

0

∫ ∞

0

f(x, y) dy dx.

Use this to show that ∫
R
e−x2

=
√
π.

Solution. Since f(x, y) is strictly positive, we know that if either integral converges, then they are necessarily equal
by Fubini. Note that∫ ∞

0

∫ ∞

0

ye−(1+x2) y2

dy dx =
1

2

∫ ∞

0

∫ ∞

0

e−(1+x2)u du dx =
1

2

∫ ∞

0

dx

1 + x2
=

π

4
.

Thus, ∫ ∞

0

∫ ∞

0

f(x, y) dx dy =

∫ ∞

0

∫ ∞

0

f(x, y) dy dx =
π

4
.

Now note that

π

4
=

∫ ∞

0

∫ ∞

0

f(x, y) dx dy =

∫ ∞

0

ye−y2

∫ ∞

0

e−(xy)2 dx dy =

∫ ∞

0

e−y2

∫ ∞

0

e−u2

du dy =

(∫ ∞

0

e−x2

dx

)2

.

Thus since exp
(
−x2

)
is symmetric in x we have

√
π

2
=

∫ ∞

0

e−x2

dx =⇒
∫
R
e−x2

dx =
√
π.

Example 1.8.3 (Spring 2024, Problem 2). Let fn : [0, 1] → R be a sequence of measurable functions with |fn(x)| ⩽ 1
for a.e. x. Let

gn(x) =

∫ x

0

fn(t)dt

Show that there exists an absolutely continuous g and a subsequence nk → ∞ such that gnk
→ g in C([0, 1]).

Solution. Note that

|gn(x)| =
∣∣∣∣∫ x

0

fn(t) dt

∣∣∣∣ ≤ ∫ x

0

|fn(t)| dt ≤
∫ x

0

dt = x.

Thus |gn(x)| ≤ x uniformly in n. Similarly,

|gn(y)− gn(x)| =
∣∣∣∣∫ y

x

fn(t) dt

∣∣∣∣ ≤ ∫ y

x

|fn(t)| dt ≤
∫ y

x

dt = y − x.

Thus |gn(y)− gn(x)| ≤ |y − x| uniformly in n. Since the gn are uniformly bounded and equicontinuous, by Arzela-
Ascoli we know there exists a subsequence nk such that gnk

→ g uniformly where g is in C([0, 1]). Since gn is the
integral of an L1 function, it is absolutely continuous. Since g is the uniform limit of absolutely continuous functions,
it is absolutely continuous.
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Example 1.8.4 (Fall 2024, Problem 1). Let (X, ρ) be a metric space

• Suppose that (X, ρ) is separable. Prove that if Y ⊆ X then (Y, ρ) is separable also.

• Suppose that (X, ρ) is compact. Let F be any set of real valued functions on X that is uniformly bounded and
equicontinuous. Is the function g(x) = supf∈F f(x) necessarily continuous?

Solution. Let ρ(x, Y ) = inf{ρ(x, y) : y ∈ Y }. Since (X, ρ) is separable there exists a countable dense subset D ⊆ X.
Now for each d ∈ D let us choose ed,n ∈ Y such that ρ(d, ed,n) < ρ(d, Y ) + 1/n. Now define

E =
⋃
d∈D

⋃
n∈N

ed,n.

Note that E is a countable set since it is a countable union of countable sets.
Now let ε > 0 and y ∈ Y . Since D is a dense subset of X and Y ⊆ X, there exists d ∈ D with ρ(y, d) < ε. Thus,

ρ(d, Y ) < ε certainly. By construction of E we also know there exists e ∈ E such that ρ(d, e) < ρ(d, Y ) + ε. Thus,

ρ(y, e) ≤ ρ(y, d) + ρ(d, e) < ρ(y, d) + ρ(d, Y ) + ε < 3ε.

So E is a dense subset of Y .
Thus E is a countably dense subset of Y and so it follows that (Y, ρ) is separable.

Since F is equicontinuous, we know that for all ε > 0 there exists δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| < ε
for all f ∈ F . Thus we have

f(x) < f(y) + ε ≤ g(y) + ε and f(y) < f(x) + ε ≤ g(x) + ε.

So we have that

g(x) = sup
f∈F

f(x) < sup
f∈F

(g(y) + ε) = g(y) + ε and g(y) = sup
f∈F

f(y) < sup
f∈F

(g(x) + ε) = g(x) + ε.

Thus |x− y| < δ =⇒ |g(x)− g(y)| < ε as desired.

Example 1.8.5 (Fall 2021, Problem 1). For a sequence of real numbers {an}, write down the definition of lim supn→∞ an.
Prove that for any sequence of Lebesgue measurable functions {fn} we have that f = lim supn→∞ fn is Lebesgue
measurable also.

Solution. Recall that lim supn→∞ an = limn→∞
(
supm≥n an

)
= infn≥0

(
supm≥n an

)
.

Let fi = infn∈N fn and fs = supn∈N fn. Note that

f−1
i ([−∞, x)) =

⋃
n

f−1
n ([−∞, x)) and f−1

s ((x,∞]) =
⋃
n

f−1
n ((x,∞]).

Since each fn is measurable we know that f−1
n ([−∞, x)) and f−1

n ((x,∞]) are measurable. Since f−1
i ([−∞, x)) and

f−1
s ((x,∞]) are a countable union of measurable sets, they are both measurable. Thus fi and fs are measurable
functions, so the infinmum and supremum of a family of measurable functions is itself measurable.

Since lim supn→∞ fn = infn≥0

(
supm≥n fn

)
, it follows that lim supn→∞ fn is measurable.
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