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1 Analytic Number Theory

1.1 Possion Summation and Mellin Transform

Definition 1.1 (Fourier Transform). Let f : R → C be integrable. We define the Fourier transform of f as

f̂(s) =

∫
R
f(t) e−2πist dt.

Lemma 1.2 (Common Fourier Transforms). We have the following common Fourier transforms

f(t) f̂(s)

g(n+ t) e2πins ĝ(s)

g(nt)
ĝ(s/n)

n

eint g(t) ĝ
(
s− n

2π

)
ĝ(t) g(−s)

(g ∗ h)(t) ĝ(s) ĥ(s)

g(t)h(t) (ĝ ∗ ĥ)(s)

1 δ(s)

δ(t) 1

Note that here, convolution is given by

(g ∗ h)(t) =
∫ ∞

−∞
g(s)h(t− s) ds.

Remark. In some sense, convolution of Fourier transforms is an additive rule. Whereas with Mellin transforms, it
it is a multiplicative rule.

Definition 1.3 (Schwartz Function). A function f ∈ C∞(R) is Schwartz if for all m and n we have∣∣∣∣dmfdxm

∣∣∣∣≪ |x|−n
as x→ ±∞.

Theorem 1.4 (Poisson Summation). Let f : R → C be integrable and Schwartz. It follows that∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Let us define

F (x) =
∑
n∈Z

f(x+ n).

Note that this function is 1-periodic since it is a sum over Z. We take its Fourier series expansion

F (x) =
∑
m∈Z

ame
2πimx with am =

∫ 1

0

F (x) e−2πimx dx.

Now note that

am =

∫ 1

0

∑
n∈Z

f(x+ n) e−2πimx dx =
∑
n∈Z

∫ 1

0

f(x+ n) e−2πimx dx;
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here we can interchange the integration and summation since (0, 1) is finite w.r.t Lebesgue measure. Note that for
all m, n ∈ Z we have e−2πimn = 1. So it follows by translation invariance of Lesbegue measure

am =
∑
n∈Z

∫ 1

0

f(x+ n) e−2πimx dx =
∑
n∈Z

∫ 1

0

f(x+ n) e−2πim(x+n) d(x+ n).

Now since f is Schwarz, we have absolute convergence; thus,

am =
∑
n∈Z

∫ 1

0

f(x+ n) e−2πim(x+n) d(x+ n) =

∫
R
f(x) e−2πimx dx = f̂(m).

Thus we have
F (x) =

∑
m∈Z

f̂(m) e2πimx

and specializing x = 0 completes the proof.

Definition 1.5 (Mellin Transform). Let f : R → C be integrable. We define the Mellin transform of f as

(Mf)(s) =

∫ ∞

0

ts−1 f(t) dt.

Additionally, we define the inverse Mellin transform as

(M−1f)(t) =
1

2πi

∫ c+i∞

c−i∞
t−s f(s) ds

independent of c ∈ R.

Theorem 1.6 (Mellin Inversion Theorem). If f is analytic in the strip a < σ < b and tends to zero uniformly as
Im(s) → ±∞, then for

g = (M−1f)(t) =
1

2πi

∫ c+i∞

c−i∞
t−sf(s) ds

we have that

f = (Mg)(s) =

∫ ∞

0

ts−1 g(t) dt.

Lemma 1.7 (Common Mellin Transforms). We have the following common Fourier transforms

f(t) (Mf)(s)

tn g(t) (Mg)(s+ n)

g(1/t) (Mg)(−s)

(g ∗ h)(t) (Mg)(s) · (Mh)(s)

g(t) · h(t) 1

2πi

∫ c+i∞

c−i∞
(Mg)(t) · (Mh)(s− t) dt

e−t Γ(s)

δ(t− n) nt−1

Note that here, convolution is given by

(g ∗ h)(t) =
∫ ∞

−∞
g(s)h(t/s) ds/s.
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1.2 Dirichlet Characters

Definition 1.8 (Dirichlet Characters). Let χ : Z → C be a Dirichlet character with associated modulus q satisfying

χ(ab) = χ(a)χ(b) and χ(a) ̸= 0 ⇐⇒ (a, q) = 1 and χ(a+ q) = χ(a)

for all a and b.

Definition 1.9 (Primitive Dirichlet Characters). We say that χ has a quasiperiod d if χ(m) = χ(n) for all m and
n coprime to q such that m ≡ n mod d. The smallest quasiperiod of χ is its conductor. If a character’s conductor
equals its modulus, it is primitive.

Lemma 1.10 (Orthogonality of Dirichlet Characters I). For a character χ with modulo q, we have that

q−1∑
m=0

χ(m) =

{
ϕ(q) χ = χ0

0 χ ̸= χ0.

Proof. The proof of the first case is trivial: if χ = χ0 then there are ϕ(q) summands which are 1 and all other
summands are 0. In the other case, there exists some a ∈ (Z/qZ)× such that χ(a) ̸= 1. Noting that m 7→ am is a
bijective map on Z/qZ we have that

q−1∑
m=0

χ(m) =

q−1∑
m=0

χ(am) = χ(a)

q−1∑
m=0

χ(m) =⇒ (χ(a)− 1)

q−1∑
m=0

χ(m) = 0.

Since χ(a)− 1 ̸= 0, it must be that our sum over m is exactly 0.

Lemma 1.11 (Orthogonality of Dirichlet Characters II). As a sum over characters with modulo q, we have that

∑
χ

χ(a) =

{
ϕ(q) a ≡ 1 mod q

0 a ̸≡ 1 mod q.

Proof. The proof of the first case is trivial, since the group of characters with modulo q is isomorphic to (Z/qZ)×,
we know there are ϕ(q) terms of the form χ(1) = 1. In the other case, there exists some χ′ such that χ′(a) ̸= 1.
Noting that χ 7→ χχ′ is a bijective map on the group of characters with modulo q we have that∑

χ

χ(a) =
∑
χ

χχ′(a) = χ′(a)
∑
χ

χ(a) =⇒ (χ′(a)− 1)
∑
χ

χ(a) = 0.

Since χ′(a)− 1 ̸= 0, it must be that the sum over χ is exactly 0.

Definition 1.12 (Gauss Sums). For a character χ with modulo q (usually we only care about the primitive ones)
we define the Gauss sum of frequency n ∈ Z, τn(χ) as

τn(χ) =

q−1∑
m=0

χ(m) e2πimn/q.

For notation sake, we define the basic Gauss sum as τ(χ) = τ1(χ).

Lemma 1.13. If χ is a primitive character with modulo q and (n, q) = 1, then we have that χ(n) τ(χ) = τn(χ)

Proof. Note that m 7→ mn is a bijective map in Z/qZ. So we have that

χ(n) τ(χ) = χ(n)

q−1∑
m=0

χ(m) e2πim/q = χ(n)

q−1∑
m=0

χ(mn) e2πimn/q =

q−1∑
m=0

χ(m) e2πimn/q = τn(χ)

since χ(n)χ(n) = 1.

Lemma 1.14. If χ is a primitive character with modulo q then τ(χ)τ(χ) = χ(−1) q.
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Proof. Note that

τ(χ) τ(χ) =

q−1∑
m=0

χ(m) τ(χ) e2πim/q =

q−1∑
m=0

τm(χ) e2πim/q

=

q−1∑
m=0

q−1∑
n=0

χ(n) e2πimn/q e2πim/q =

q−1∑
n=0

χ(n)

q−1∑
m=0

e2πim(n+1)/q.

Now by orthogonality relations, we know that the inner sum vanishes if n ̸≡ −1 mod q and equals q if n ≡ −1 mod q.
Thus, the result follows as everything but the m = q − 1 term vanishes.

Lemma 1.15. If χ is a primitive character with modulo q, then we have that

χ(n) =
1

q

q−1∑
m=0

τ−m(χ) e2πimn/q.

Proof. Note that

q−1∑
m=0

τ−m(χ) e2πimn/q =

q−1∑
m=0

q−1∑
j=0

χ(j) e−2πimj/q e2πimn/q =

q−1∑
j=0

χ(j)

q−1∑
m=0

e2πim(n−j)/q.

Now by orthogonality relations, we know the inner sum vanishes if j ̸≡ n mod q and equals q if j ≡ n mod q. Thus,
everything but the j = n term vanishes

q−1∑
m=0

τ−m(χ) e2πimn/q =

q−1∑
j=0

χ(j)

q−1∑
m=0

e2πim(n−j)/q = χ(n) q.

Dividing through by q completes the proof.

Definition 1.16 (Root Number of a Character). Given a primitive character χ, we define the root number of a
character W (χ) as

W (χ) =
τ(χ)

iδ
√
q

where δ =

{
0 χ(−1) = 1

1 χ(−1) = −1.

Lemma 1.17. We have that W (χ)W (χ) = 1.

Proof. We have that

W (χ)W (χ) =
τ(χ) τ(χ)

(−1)δq
=
χ(−1) q

(−1)δq
.

Since χ(−1) = (−1)δ, everything cancels.
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1.3 Riemann ζ Function and Dirichlet L-Function

Definition 1.18 (Riemann ζ Function). We define ζ(s) for Re(s) > 1 as the sum

ζ(s) =

∞∑
n=1

1

ns
.

Definition 1.19 (Dirichlet L-Function). For χ a Dirichlet character, we define L(χ, s) for Re(s) > 1 as the sum

L(χ, s) =

∞∑
n=1

χ(n)

ns
.

Lemma 1.20 (Euler Product of ζ). For Re(s) > 1 we have that

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− 1/ps
.

Lemma 1.21 (Euler Product of L-functions). For Re(s) > 1 we have that

L(χ, s) =
∞∑

n=1

χ(n)

ns
=
∏
p

1

1− χ(p)/ps
.

Lemma 1.22 (Equivalent Form of ζ). Let

ζ0(s) =
s

s− 1
− s

∫ ∞

1

{x}x−s dx

x
.

We have that ζ(s) = ζ0(s) for σ > 1.

Proof. Note that for σ > 1 we have

ζ(s) =

∞∑
n=1

1

ns
=

∞∑
n=1

n

ns
−

∞∑
n=1

n− 1

ns
=

∞∑
n=1

n

ns
−

∞∑
n=0

n

(n+ 1)s
=

∞∑
n=1

n

ns
−

∞∑
n=1

n

(n+ 1)s
.

Thus

ζ(s) =

∞∑
n=1

n (n−s − (n+ 1)−s).

Now we note that

s

∫ n+1

n

x−s dx

x
= s

(
−1

s
x−s

)n+1

n

= n−s − (n+ 1)−s.

So, substituting this we have

ζ(s) =

∞∑
n=1

n (n−s − (n+ 1)−s) = s

∞∑
n=1

n

∫ n+1

n

x−s dx

x
= s

∫ ∞

1

⌊x⌋x−s dx

x
.

But noting that ⌊x⌋ = x− {x} we have that

ζ(s) = s

∫ ∞

1

⌊x⌋x−s dx

x
= s

∫ ∞

1

x−s dx− s

∫ ∞

1

{x}x−s dx

x
.

Evaluating the first integral completes the result.

Corollary 1.23 (Meromorphic Continuation of ζ to σ > 0). We have that ζ0(s) has a simple pole at s = 1 and is
meromorphic on the half plane σ > 0.

Proof. Note that for σ > 0 we have∣∣∣∣s∫ ∞

1

{x}x−s dx

x

∣∣∣∣ ≤ |s|
∫ ∞

1

∣∣{x}x−s−1
∣∣ dx ≤ |s|

∫ ∞

1

x−σ−1 dx =
|s|
σ
.

So this integral converges and we have that ζ0(s) is meromorphic on the half plane σ > 0.
Additionally, it follows that ζ0(s) has a simple pole at s = 1.
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Theorem 1.24 (Analytic Continuation of ζ). We can analytically continue ζ to the entire complex plane.

Proof. Recall that for σ > 0, Γ(s) is defined as

Γ(s) =

∫ ∞

0

e−tts−1 dt.

Now if we do the substitution t = nu, then after some manipulation we have that

n−s Γ(s) =

∫ ∞

0

e−ntts−1 dt.

Now we take the sum over all n ≥ 1.

ζ(s) Γ(s) =
∑
1≤n

n−s Γ(s) =
∑
1≤n

∫ ∞

0

e−ntts−1 dt.

Now note that, using the substitution u = nt we have∑
1≤n

∫ ∞

0

∣∣e−ntts−1
∣∣ dt =∑

1≤n

∫ ∞

0

e−nttσ−1 dt =
∑
1≤n

1

nσ

∫ ∞

0

e−uuσ−1 du = Γ(σ) ζ(σ).

For σ > 1 we know this converges. So by Fubini-Tonelli, when σ > 1, we can interchange the sum and integral as
needed.

ζ(s) Γ(s) =
∑
1≤n

∫ ∞

0

e−ntts−1 dt =

∫ ∞

0

∑
1≤n

e−ntts−1 dt =

∫ ∞

0

ts−1e−t

1− e−t
dt.

Now using the substitution t = 2u we have

ζ(s) Γ(s) =

∫ ∞

0

ts−1e−t

1− e−t
dt = 2

∫ ∞

0

(2u)s−1e−2u

1− e−2u
du = 2s

∫ ∞

0

us−1e−2u

1− e−2u
du.

Thus,

(1− 21−s) ζ(s) Γ(s) =

∫ ∞

0

ts−1

(
e−t

1− e−t
− 2e−2t

1− e−2t

)
dt =

∫ ∞

0

ts−1

1 + et
dt.

Using integration by parts with u = 1/(1 + et) and dv = ts−1, we have that

(1− 21−s) ζ(s) Γ(s) =

∫ ∞

0

ts−1

1 + et
dt =

(
ts

s (1 + et)

) ∣∣∣∣∣
∞

0

+
1

s

∫ ∞

0

tset

(1 + et)2
dt.

Re-arranging we have

(1− 21−s) ζ(s) Γ(s+ 1) =

∫ ∞

0

tset

(1 + et)2
dt =⇒ ζ(s) =

1

(1− 21−s) Γ(s+ 1)

∫ ∞

0

tset

(1 + et)2
dt.

Using integration by parts with u = et/(1 + et)2 and dv = ts, we have that

(1− 21−s) ζ(s) Γ(s+ 1) =

∫ ∞

0

tset

(1 + et)2
dt =

(
ts+1et

(s+ 1)(1 + et)2

) ∣∣∣∣∣
∞

0

+
1

s+ 1

∫ ∞

0

ts+1(e2t − et)

(1 + et)3
dt.

Re-arranging we have

(1− 21−s) ζ(s) Γ(s+ 2) =

∫ ∞

0

ts+1(e2t − et)

(1 + et)3
dt =⇒ ζ(s) =

1

(1− 21−s) Γ(s+ 2)

∫ ∞

0

ts+1(e2t − et)

(1 + et)3
dt.

Repeating this procedure k-times yeilds an expression of the form

ζ(s) =
(−1)k

(1− 21−s) Γ(s+ k)

∫ ∞

0

ts+k−1

(
dk

dtk
1

1 + et

)
dt

Note that this expression is analytic for σ > −k for all k (except for the pole at s = 1); thus, we can extend ζ(s) to
the entire plane analytically (except for the pole at s = 1).
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Lemma 1.25 (ζ(s) Zeros I). ζ(s) has trivial zeros at the negative even integers.

Proof. Note that from the previous proof, by the fundamental theorem of calculus, we have that

ζ(1− k) =
(−1)k

(1− 2k)

∫ ∞

0

(
dk

dtk
1

1 + et

)
dt =

(−1)k

(1− 2k)

(
dk−1

dtk−1

1

1 + et

) ∣∣∣∣∣
∞

0

= − (−1)k

(1− 2k)

(
dk−1

dtk−1

1

1 + et

) ∣∣∣∣∣
t=0

.

One finds that
1

1 + et
=

1

2
+
∑
1≤k

(1− 2k+1)Bk+1x
k

(k + 1)!
.

Thus for 1 ≤ k we have

ζ(1− k) = − (−1)k(k − 1)!

(1− 2k)

(
(1− 2k)Bk

k!

)
= − (−1)kBk

k
.

So, if 1− k is even then k is odd and Bk = 0; thus, ζ(1− k) = 0 also.

Lemma 1.26 (ζ(s) Poles). ζ(s) has a pole at s = 1 with residue 1.

Proof. Note that for fixed s ∈ R, t−s is a monotone decreasing function. Thus we have that

(n+ 1)−s <

∫ n+1

n

t−s dt < n−s.

Summing over all n ≥ 1 we have

ζ(s)− 1 <

∫ ∞

1

t−s dt < ζ(s).

Noting that the integral evaluates as (s − 1)−1, rearranging gives us that 1 < (s − 1) ζ(s) < s. Letting s → 1 from
above gives the desired result.

Definition 1.27 (Jacobi θ function). We define the Jacobi θ function as follows. Let

θ(t) =
∑
n∈Z

e−πn2t = 1 + 2
∑
1≤n

e−πn2t.

Lemma 1.28 (Functional Equation for θ). We have that

θ(1/t) =
√
t θ(t).

Proof. Note that via Poisson summation we have

θ(1/t) =
∑
n∈Z

e−πn2/t =
∑
m∈Z

∫
R
e−πn2/te−2πimn dn.

By using the substitution n = u
√
t we have that∫

R
e−πn2/te−2πimn dn =

√
t

∫
R
exp
(
−πu2 − 2πimu

√
t
)
du

=
√
t

∫
R
exp
(
−π(u2 + 2imu

√
t−m2t+m2t)

)
du

= e−πm2t
√
t

∫
R
exp
(
−π(u+ im

√
t)2
)
du = e−πm2t

√
t.

Thus we have that

θ(1/t) =
∑
n∈Z

e−πn2/t =
∑
m∈Z

∫
R
e−πn2/te−2πimn dn =

√
t
∑
m∈Z

e−πm2t =
√
t θ(t).
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Theorem 1.29 (Functional Equation for ζ). We have that

Γ(s/2) ζ(s)

πs/2
=

Γ((1− s)/2) ζ(1− s)

π(1−s)/2
.

Proof. Recall the definition of the Γ function and substitute x = πn2t:

Γ(s/2) =

∫ ∞

0

e−xxs/2−1 dx = πs/2ns
∫ ∞

0

e−πn2tts/2−1 dt.

Thus

π−s/2 Γ(s/2) ζ(s) =
∑
1≤n

n−sπ−s/2 Γ(s/2) =
∑
1≤n

∫ ∞

0

e−πn2tts/2−1 dt.

Now note that, using the substitution u = πn2t we have∑
1≤n

∫ ∞

0

∣∣∣e−πn2tts/2−1
∣∣∣ dt =∑

1≤n

∫ ∞

0

e−πn2ttσ/2−1 dt = π−σ/2
∑
1≤n

1

nσ

∫ ∞

0

e−u uσ/2−1 du =
ζ(σ) Γ(σ/2)

πσ/2
.

For σ > 1 we know this converges. So by Fubini-Tonelli, when σ > 1, we can interchange the sum and integral as
needed.

π−s/2 Γ(s/2) ζ(s) =
∑
1≤n

∫ ∞

0

e−πn2tts/2−1 dt =

∫ ∞

0

∑
1≤n

e−πn2tts/2−1 dt =
1

2

∫ ∞

0

(θ(t)− 1) ts/2−1 dt.

Applying linearity, we note that∫ ∞

0

(θ(t)− 1) ts/2−1 dt = −2

s
+

∫ 1

0

θ(t) ts/2−1 dt+

∫ ∞

1

(θ(t)− 1) ts/2−1 dt.

Focusing on the first integral and using the substitution t = 1/u, we have∫ 1

0

θ(t) ts/2−1 dt = −
∫ 1

∞
θ(1/u)u−s/2−1 du =

∫ ∞

1

θ(u)u(1−s)/2−1 du.

via the functional equation for θ. Thus,∫ 1

0

θ(t) ts/2−1 dt =

∫ ∞

1

θ(t) t(1−s)/2−1 dt =

∫ ∞

1

(θ(t)− 1) t(1−s)/2−1 dt+
2

s− 1
.

So we have that

π−s/2 Γ(s/2) ζ(s) = − 1

s (1− s)
+

∫ ∞

1

(θ(t)− 1)
(
ts/2−1 + t(1−s)/2−1

)
dt.

Noting that the RHS is equivalent under the substitution s↔ 1− s completes the proof.

Lemma 1.30 (ζ(s) Zeros II). Every non-trivial zeta zero lies in the strip 0 < σ < 1.

Proof. Let σ < 0 such that s is not a trivial zeta zero and ζ(s) = 0. Then 1 − σ > 1, and from the Euler product
expansion of ζ we know that ζ(1− s) ̸= 0. So, from the functional equation, we have that

0 = ζ(s) = πs−1/2

(
Γ((1− s)/2)

Γ(s/2)

)
ζ(1− s).

Now recall Euler’s reflection formula and Legendre’s duplication formula which state

Γ(z) Γ(1− z) =
π

sinπz
and Γ(z) Γ(z + 1/2) = 21−2z

√
π Γ(2z)

respectively. Substituting z = s/2 into the first, and z = (1− s)/2 into the second, we have

Γ(s/2) Γ(1− s/2) =
π

sin(πs/2)
and Γ((1− s)/2) Γ(1− s/2) = 2s

√
π Γ(1− s).

9



Thus,
Γ((1− s)/2)

Γ(s/2)
=

2s Γ(1− s) sin(πs/2)√
π

.

So we have that,

0 = ζ(s) =

(
(2π)s Γ(1− s) sin(πs/2)

π

)
ζ(1− s).

Since ζ(1 − s) ̸= 0, and noting that Γ(1 − s) ̸= 0 also; it must be the case that sin(πs/2) = 0. Thus, s =
−2, −4, −6, . . ..

Therefore, any other zeros must lie in the strip 0 < σ < 1.

Theorem 1.31 (Analytic Continuation of L-functions). We can analytically continue L(χ, s) to the entire complex
plane.

Proof. Recall that for all σ > 0, Γ(s) is defined as

Γ(s) =

∫ ∞

0

e−tts−1 dt.

Now if we do the substitution t = nu, then after some manipulation we have that

n−s Γ(s) =

∫ ∞

0

e−ntts−1 dt.

Now if we take the sum over all n ≥ 1 with character χ.

L(χ, s) Γ(s) =
∑
1≤n

χ(n)n−s Γ(s) =
∑
1≤n

χ(n)

∫ ∞

0

e−nt ts−1 dt.

Now note that, using the substitution u = nt we have∑
1≤n

∫ ∞

0

∣∣χ(n) e−nt ts−1
∣∣ dt ≤∑

1≤n

∫ ∞

0

e−nt tσ−1 dt =
∑
1≤n

1

nσ

∫ ∞

0

e−u uσ−1 du = Γ(σ) ζ(σ).

For σ > 1 we know this converges. So by Fubini-Tonelli, when σ > 1, we can interchange the sum and integral as
needed.

L(χ, s) Γ(s) =
∑
1≤n

χ(n)

∫ ∞

0

e−ntts−1 dt =

∫ ∞

0

∑
1≤n

χ(n) e−ntts−1 dt.

We now break up our sum modulo q where n = j +mq,

L(χ, s) Γ(s) =

∫ ∞

0

∑
1≤n

χ(n) e−ntts−1 dt =
∑

1≤j≤q

χ(j)

∫ ∞

0

∑
0≤m

e−(j+mq) tts−1 dt =
∑

1≤j≤q

χ(j)

∫ ∞

0

ts−1 e−jt

1− e−qt
dt.

Now using the substitution t = 2u we have

L(χ, s) Γ(s) =
∑

1≤j≤q

χ(j)

∫ ∞

0

ts−1e−jt

1− e−qt
dt = 2

∑
1≤j≤q

χ(j)

∫ ∞

0

(2u)s−1e−2ju

1− e−2qu
du = 2s

∑
1≤j≤q

χ(j)

∫ ∞

0

us−1 e−2ju

1− e−2qu
du.

Thus,

(1− 21−s)L(χ, s) Γ(s) =
∑

1≤j≤q

χ(j)

∫ ∞

0

ts−1

(
e−jt

1− e−qt
− 2e−2jt

1− e−2qt

)
dt

=
∑

1≤j≤q

χ(j)

∫ ∞

0

ts−1

(
e−jt(1− 2e−jt + e−qt)

1− e−2qt

)
dt.

Now note that if t = 0 then e−t = 1. So, 1− 2e−jt + e−qt = 0 and 1− e−2qt = 0. Thus we can factor a 1− e−t term
out of the numerator and denominator to get

(1− 21−s)L(χ, s) Γ(s) =
∑

1≤j≤q

χ(j)

∫ ∞

0

ts−1

(
Pj(e

−t)

1 + e−t + . . .+ e−(2q−1)t

)
dt

10



where Pj is some degree j + q − 1 polynomial. Using repeated integration by parts and rearranging gives us an
expression of the form

L(χ, s) =
(−1)k

(1− 21−s) Γ(s+ k)

∑
1≤j≤q

χ(j)

∫ ∞

0

ts+k−1Qj,k(e
−t) dt

where Qj,k is some quotient of polynomials with Qj,k(e
−t) having exponential decay at ∞.

Note that this expression is analytic for σ > −k for all k; thus, we can extend L(χ, s) to the entire plane
analytically.

Lemma 1.32 (L(χ, s) Negative Values). For k ≥ 1 we have that

L(χ, 1− k) = − (−1)kBk,χ

k
where

∑
1≤j≤q

χ(j)
tejt

eqt − 1
=
∑
0≤n

Bn,χ

n!
tn.

Proof. (Sketch) Note that by the fundamental theorem of calculus and the previous equation we have that

L(χ, 1− k) =
(−1)k

(1− 2k)

∑
1≤j≤q

χ(j)

∫ ∞

0

Qj,k(e
−t) dt = − (−1)k

(1− 2k)

∑
1≤j≤q

χ(j)

(
dk−1

dk−1

Pj(e
−t)

1 + e−t + . . .+ e−(2q−1)t

) ∣∣∣∣∣
t=0

.

By evaluating the power series expansion of

Pj(e
−t)

1 + e−t + . . .+ e−(2q−1)t
=
∑
1≤k

cj,kx
k

then for 1 ≤ k we have

L(χ, 1− k) = − (−1)k

(1− 2k)

∑
1≤j≤q

χ(j) ((k − 1)! cj,k−1) .

Actually evaluating cj,k−1 and substituting yields the desired result.

Definition 1.33 (Twisted θ Function). Given a primitive character χ with modulo q, we define δ = 0 if χ(−1) = 1
and δ = 1 if χ(−1) = −1. Now we define the θ function twisted by the character χ as

θχ(t) =
∑
n∈Z

nδχ(n) e−πn2t/q = 2
∑
1≤n

nδχ(n) e−πn2t/q.

Lemma 1.34 (Functional Equation for Twisted θ Functions). We have that

θχ(1/t) =W (χ) t1/2+δ θχ(t).

Proof. Recall that we can express χ(n) as a linear combination of τ−m(χ) with m ranging over Z/qZ. Thus we write

θχ(1/t) =

q−1∑
m=0

τ−m(χ)

q

∑
n∈Z

nδ e2πimn/q−πn2/(qt). (1)

We will revisit this equation later. By Poisson summation, and using the substitution n = u
√
r we have that∑

n∈Z
e−π (x+n)2/r =

∑
m∈Z

∫
R
e−π(x+n)2/re−2πimn dn =

√
r
∑
m∈Z

∫
R
e−π(u+x/

√
r)2e−2πimu

√
r dr.

Now note that

−π
(
u+

x√
r

)2

− 2πimu
√
r = −π

(
u+

x√
r
+ im

√
r

)2

+ 2πixm− πm2r,

so we have that

∑
n∈Z

e−π(x+n)2/r =
√
r
∑
m∈Z

exp
(
2πixm− πm2r

) ∫
R
exp

(
−π
(
u+

x√
r
+ im

√
r

)2
)
dr.
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The inner integral is trivially 1. So after some manipulation we have∑
n∈Z

e2πixn−πn2r = r−1/2
∑
n∈Z

e−π(x+n)2/r.

Differentiating term by term w.r.t the variable x (we can do this because of the exponential decay in the terms as
n→ ±∞) and rearranging slightly we have∑

n∈Z
ne2πixn−πn2r = ir−3/2

∑
n∈Z

(x+ n) e−π(x+n)2/r.

So, if we let x = m/q and r = 1/(qt) then by algebraic manipulation we have∑
n∈Z

nδe2πimn/q−πn2/(qt) = iδ(qt)1/2+δ
∑
n∈Z

(m/q + n)δe−π(m/q+n)2qt.

So returning to 1 we have that

θχ(1/t) =
iδ (qt)1/2+δ

q

q−1∑
m=0

τ−m(χ)
∑
n∈Z

(m/q + n)δe−π(m/q+n)2qt

= (it)δ
√
t

q

q−1∑
m=0

τ−m(χ)
∑
n∈Z

(m+ nq)δe−π(m+nq)2t/q = (it)δ
√
t

q

∑
n∈Z

nδτ−n(χ) e
−πn2t/q.

Recalling that χ(−n) τ(χ) = τ−n(χ), noting that χ(−n) = (−1)δχ(n), and −i = 1/i; we now have that

θχ(1/t) = τ(χ)

(
t

i

)δ√
t

q

∑
n∈Z

nδ χ(n) e−πn2t/q =W (χ) t1/2+δ θχ(t)

exactly as desired.

Theorem 1.35 (Functional Equation for L-functions). For a primitive character χ with modulo q and χ(−1) =
(−1)δ, we have that( q

π

)s/2
Γ((s+ δ)/2)L(χ, s) =W (χ)

( q
π

)(1−s)/2

Γ((1− s+ δ)/2)L(χ, 1− s)

Proof. Recall the definition of the Γ function and substitute x = πn2t/q:

Γ((s+ δ)/2) =

∫ ∞

0

e−xx(s+δ)/2−1 dx = ns

(
π

q

)(s+δ)/2 ∫ ∞

0

nδe−πn2t/qt(s+δ)/2−1 dt.

Thus( q
π

)(s+δ)/2

Γ((s+ δ)/2)L(χ, s) =
∑
1≤n

χ(n)

ns

( q
π

)(s+δ)/2

Γ((s+ δ)/2) =
∑
1≤n

∫ ∞

0

χ(n)nδe−πn2t/qt(s+δ)/2−1 dt.

Now note that, using the substitution u = πn2t/q we have∑
1≤n

∫ ∞

0

∣∣∣χ(n)nδ e−πn2t/qt(s+δ)/2−1
∣∣∣ dt ≤∑

1≤n

∫ ∞

0

nδ e−πn2t/qt(σ+δ)/2−1 dt

=
( q
π

)(σ+δ)/2∑
1≤n

1

nσ

∫ ∞

0

e−uu(σ+δ)/2−1 du =
( q
π

)(σ+δ)/2

Γ((σ + δ)/2) ζ(σ).

For σ > 1 we know this converges. So by Fubini-Tonelli, when σ > 1, we can interchange the sum and integral as
needed. ( q

π

)(s+δ)/2

Γ((s+ δ)/2)L(χ, s) =
∑
1≤n

∫ ∞

0

χ(n)nδ e−πn2t/qt(s+δ)/2−1 dt

=

∫ ∞

0

∑
1≤n

χ(n)nδ e−πn2t/qt(s+δ)/2−1 dt =
1

2

∫ ∞

0

θχ(t) t
(s+δ)/2−1 dt.
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Applying linearity, we note that∫ ∞

0

θχ(t) t
(s+δ)/2−1 dt =

∫ 1

0

θχ(t) t
(s+δ)/2−1 dt+

∫ ∞

1

θχ(t) t
(s+δ)/2−1 dt.

Focusing on the first integral and using the substitution t = 1/u, we have∫ 1

0

θχ(t) t
(s+δ)/2−1 dt = −

∫ 1

∞
θχ(1/u)u

−(s+δ)/2−1 du =W (χ)

∫ ∞

1

θχ(u)u
(1−s+δ)/2−1 du

via the functional equation for θχ. So we have that

2
( q
π

)(s+δ)/2

Γ((s+ δ)/2)L(χ, s) =W (χ)

∫ ∞

1

θχ(t) t
(1−s+δ)/2−1 dt+

∫ ∞

1

θχ(t) t
(s+δ)/2−1 dt.

By replacing χ with χ and s with 1− s we have

2
( q
π

)(1−s+δ)/2

Γ((1− s+ δ)/2)L(χ, 1− s) =W (χ)

∫ ∞

1

θχ(t) t
(s+δ)/2−1 dt+

∫ ∞

1

θχ(t) t
(1−s+δ)/2−1 dt.

Multiplying through by W (χ) and recalling that W (χ)W (χ) = 1, we have

2W (χ)
( q
π

)(1−s+δ)/2

Γ((1− s+ δ)/2)L(χ, 1− s) =

∫ ∞

1

θχ(t) t
(s+δ)/2−1 dt+W (χ)

∫ ∞

1

θχ(t) t
(1−s+δ)/2−1 dt.

Thus,

2
( q
π

)(s+δ)/2

Γ((s+ δ)/2)L(χ, s) = 2W (χ)
( q
π

)(1−s+δ)/2

Γ((1− s+ δ)/2)L(χ, 1− s).

Removing common factors on both sides proves the desired result.

Lemma 1.36 (L(χ, s) Zeros). Every non-trivial zero of L(χ, s) lies in the strip 0 < σ < 1.

Proof. Let σ < 0 such that L(χ, s) = 0. Then 1 − σ > 1, and from the Euler product expansion of L-functions we
know that L(χ, 1− s) ̸= 0. So, from the functional equation, we have that

0 = L(χ, s) =W (χ)

(
πs−1/2 Γ((1− s+ δ)/2)

qs−1/2 Γ((s+ δ)/2)

)
L(χ, 1− s).

Now recall Euler’s reflection formula and Legendre’s duplication formula which state

Γ(z) Γ(1− z) =
π

sinπz
and Γ(z) Γ(z + 1/2) = 21−2z

√
π Γ(2z)

respectively. If δ = 0 then substituting z = s/2 into the first, and z = (1− s)/2 into the second we have

Γ(s/2) Γ(1− s/2) =
π

sin(πs/2)
and Γ((1− s)/2) Γ(1− s/2) = 2s

√
π Γ(1− s).

Thus,
Γ((1− s+ δ)/2)

Γ((s+ δ)/2)
=

Γ((1− s)/2) Γ(1− s/2)

Γ(s/2) Γ(1− s/2)
=

2s Γ(1− s) sin(πs/2)√
π

.

So we have that,

0 = L(χ, s) =W (χ)

(
(2π)s Γ(1− s) sin(πs/2)

πqs−1/2

)
L(χ, 1− s).

Since L(χ, 1 − s) ̸= 0, and noting that Γ(1 − s) ̸= 0 also; it must be the case that sin(πs/2) = 0. Thus s =
−2, −4, −6, . . ..

Therefore, any other zeros must lie in the strip 0 < σ < 1.

If δ = 1 then substituting z = (1− s)/2 into the first, and z = (1− s)/2 into the second we have

Γ((1− s)/2) Γ((1 + s)/2) =
π

sin(π(1− s)/2)
and Γ((1− s)/2) Γ((2− s)/2) = 2s

√
π Γ(1− s).
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Thus,

Γ((1− s+ δ)/2)

Γ((s+ δ)/2)
=

Γ((1− s)/2) Γ((2− s)/2)

Γ((1− s)/2) Γ((1 + s)/2)
=

2s Γ(1− s) sin(π(1− s)/2)√
π

=
2s Γ(1− s) cos(πs/2)√

π
.

So we have that,

0 = L(χ, s) =W (χ)

(
(2π)s Γ(1− s) cos(πs/2)

πqs−1/2

)
L(χ, 1− s).

Since L(χ, 1 − s) ̸= 0, and noting that Γ(1 − s) ̸= 0 also; it must be the case that cos(πs/2) = 0. Thus s =
−1, −3, −5, . . ..

Therefore, any other zeros must lie in the strip 0 < σ < 1.
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1.4 Dirichlet’s Theorem on Primes in Arithmetic Progressions & PNT

Theorem 1.37 (Infinitely Many Primes from ζ(s)). There exist infinitely many primes.

Proof. Let s > 1 be real. For all questions in this proof regarding convergence, it suffices to check that |1/ps| < 1
for all primes p. From Lemma 1.20 we know that

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− 1/ps
.

So by taking the logarithm of both sides, we know that

log ζ(s) = −
∑
p

log(1− 1/ps).

Now recall that for |z| < 1 we have that − log(1− z) = z + z2/2 + z3/3 + . . .. Now we have that

log ζ(s) =
∑
p

∑
1≤n

1

npns
=
∑
p

1

ps
+
∑
p

∑
2≤n

1

npns
. (2)

But now note that∑
p

∑
2≤n

1

npns
≤
∑
p

∑
2≤n

1

pns
=
∑
p

p−2s

1− p−s
=
∑
p

1

ps (ps − 1)
=
∑
p

(
1

ps − 1
− 1

ps

)
≤
∑
p

(
1

p− 1
− 1

p

)
.

Continuing we have that ∑
p

∑
2≤n

1

npns
≤
∑
p

(
1

p− 1
− 1

p

)
≤
∑
2≤n

(
1

n− 1
− 1

n

)
= 1.

Now returning to (2) we have that

log ζ(s) ≤
∑
p

1

ps
+ 1.

If we suppose that there are finitely many primes then we have that lims→1+ ζ(s) < ∞; however, this directly
contradicts Lemma 1.26. So, there must be infinitely many primes.

Theorem 1.38 (Non-Vanishing of L(χ, 1) implies Dirichlet’s Theorem). If L(χ, 1) ̸= 0 for all Dirichlet characters
χ ̸= χ0, then there exist infinitely many primes p ≡ a mod q when (a, q) = 1.

Proof. Let s > 1 be real. For all questions in this proof regarding convergence, it suffices to check that |1/ps| < 1
for all primes p. From Lemma 1.21 we know that

L(χ, s) =

∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)/ps
.

So by taking the logarithm of both sides, we know that

logL(χ, s) = −
∑
p

log(1− χ(p)/ps).

Now recall that for |z| < 1 we have that − log(1− z) = z + z2/2 + z3/3 + . . .. Now we have that

logL(χ, s) =
∑
p

∑
1≤n

χ(pn)

npns
.

By the above we have that

1

φ(q)

∑
χ∈Xq

χ(a) logL(χ, s) =
1

φ(q)

∑
χ∈Xq

χ(a)
∑
p

∑
1≤n

χ(pn)

npns
=
∑
p

∑
1≤n

1

npns

 1

φ(q)

∑
χ∈Xq

χ(a)χ(pn)

 .
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Now applying Lemma 1.11 we have that

1

φ(q)

∑
χ∈Xq

χ(a) logL(χ, s) =
∑
1≤n

 ∑
p

p≡a mod q

1

npns

 =
∑
p

p≡a mod q

1

ps
+
∑
2≤n

 ∑
p

pn≡a mod q

1

npns

 . (3)

But now using a similar argument as in Theorem 1.37 we know that

∑
2≤n

 ∑
p

pn≡a mod q

1

npns

 ≤ 1.

Thus, we have that

lim
s→1+

1

φ(q)

∑
χ∈Xq

χ(a) logL(χ, s) = ∞ ⇐⇒
∑
p

p≡a mod q

1

ps
= ∞ ⇐⇒ Dirichlet’s theorem. (4)

Now note that

lim
s→1+

1

φ(q)

∑
χ∈Xq

χ(a) logL(χ, s) = lim
s→1+

χ0(a)

φ(q)
log

ζ(s)∏
p|q

(1− 1/ps)

+ lim
s→1+

1

φ(q)

∑
χ∈Xq

χ̸=χ0

χ(a) logL(χ, s).

Now note that lims→1+(1− 1/ps) = 1− 1/p and lims→1+ ζ(s) = ∞ by Lemma 1.26. Thus by (4) we have∣∣∣∣∣∣∣∣ lims→1+

1

φ(q)

∑
χ∈Xq

χ̸=χ0

χ(a) logL(χ, s)

∣∣∣∣∣∣∣∣ <∞ =⇒ Dirichlet’s Theorem.

But now note that if L(χ, 1) ̸= 0 for all χ ̸= χ0 then the left hand side of the above must be true. So we have that

L(χ, 1) ̸= 0 for all χ ̸= χ0 =⇒ Dirichlet’s theorem.

Lemma 1.39 (Proof that L(χ, 1) ̸= 0 for χ Complex). If χ is complex then L(χ, 1) ̸= 0.

Proof. Now recalling equation (3) and substituting a = 1 we have

lim
s→1+

1

φ(q)

∑
χ∈Xq

logL(χ, s) = lim
s→1+

∑
1≤n

 ∑
p

pn≡1 mod q

1

npns


=⇒ lim

s→1+

∑
χ∈Xq

logL(χ, s) ≥ 0 =⇒ lim
s→1+

∏
χ∈Xq

L(χ, s) ≥ 1.

Now suppose that χ is complex and L(χ, 1) = 0. Then we have that

lim
s→1+

∏
χ∈Xq

L(χ, s) = lim
s→1+

L(χ0, s)
∏

χ∈Xq

χ̸=χ0

L(χ, s) = lim
s→1+

ζ(s)

∏
p|q

(1− 1/ps)

 ∏
χ∈Xq

χ̸=χ0

L(χ, s) = 0.

This is because L(χ, 1) = L(χ, 1) = 0, ζ(s) has a simple pole at s = 1 by Lemma 1.26, and every other term is
analytic at s = 1. This of course is a contradiction.
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Lemma 1.40 (Elementary Proof that L(χ, 1) ̸= 0 for χ Real). If χ is real then L(χ, 1) ̸= 0.

Proof. (See Davenport Chapter 4 pp 33-34.)

Now suppose that χ is real and L(χ, 1) = 0. Let us define

ψ(s) =
L(χ, s)L(χ0, s)

L(χ0, 2s)
.

Note that the numerator is analytic on the region Re(s) > 0 since by assumption L(χ, 1) = 0 cancels with the simple
pole of L(χ0, s) at s = 1. The denominator is non-zero and analytic on the region Re(s) > 1/2. Thus, ψ is analytic
on the region Re(s) > 1/2. Additionally, since L(χ0, 2s) → ∞ as s→ 1/2 we note that ψ(s) → 0 as s→ 1/2.

Now note that we have the Euler product expansion for ψ(s) as

ψ(s) =
∏
p

1− χ0(p) p
−2s

(1− χ(p) p−s)(1− χ0(p) p−s)
.

Now if p | q, then χ0(p) = χ(p) = 0. So,

1− χ0(p) p
−2s

(1− χ(p) p−s)(1− χ0(p) p−s)
= 1.

If p ∤ q, then χ0(p) = 1 and χ(p) = ±1 since χ is real. If χ(p) = −1, then

1− χ0(p) p
−2s

(1− χ(p) p−s)(1− χ0(p) p−s)
=

1− p−2s

(1 + p−s)(1− p−s)
= 1.

Alternatively; if χ(p) = 1, then

1− χ0(p) p
−2s

(1− χ(p) p−s)(1− χ0(p) p−s)
=

1− p−2s

(1− p−s)(1− p−s)
=

1 + p−s

1− p−s
.

So we can write the Euler product expansion for ψ(s) as

ψ(s) =
∏
p

1− χ0(p) p
−2s

(1− χ(p) p−s)(1− χ0(p) p−s)
=

∏
p∤q

χ(p)=1

1 + p−s

1− p−s
.

And now on the region Re(s) > 1 we have

ψ(s) =
∏
p∤q

χ(p)=1

1 + p−s

1− p−s
=

∏
p∤q

χ(p)=1

(1 + p−s)(1 + p−s + p−2s + . . .) =
∑
1≤n

ann
−s

where a1 = 1 and an ≥ 0 for all n ≥ 1. Thus ψ(s) ≥ 1 for s > 1.
Alternatively, since ψ is analytic on Re(s) > 1/2 there exists a power series expansion about s = 2 with radius of

convergence at least 3/2.

ψ(s) =
∑
0≤m

ψ(m)(2)

m!
(s− 2)m.

However, recalling our Dirichlet series we have that

ψ(m)(2) = (−1)m
∑
1≤n

an(log n)
m

n2
= (−1)mbm

where bm ≥ 0. Thus,

ψ(s) =
∑
0≤m

bm
m!

(2− s)m

for |2− s| < 3/2. If 1/2 < s < 2 then note that we have

ψ(s) ≥ ψ(2) ≥ 1.

But this contradicts the earlier fact that ψ(s) → 0 as s→ 1/2. So L(χ, 1) ̸= 0 as desired.
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Lemma 1.41 (Algebraic Proof that L(χ, 1) ̸= 0). For all non-trivial Dirichlet characters we have that L(χ, 1) ̸= 0.

Proof. (See Iwaniec-Kowalski Chapter 2 pp 38.) Sketch:
The product ∏

χ∈Xq

L(χ, s) = ζK(s)

is the Dedekind zeta function of K = the cyclotomic integers at φ(q)-th roots of unity. By the class number formula
we know lims→1+(s − 1) ζK(s) ̸= 0 (note here the pole at s = 1 comes from L(χ0, s)); so no L(χ, 1) can vanish for
non-trivial χ ̸= χ0 because then this limit would be 0.

Definition 1.42 (Von Mangoldt Function). We define the Von Mangoldt function, denoted Λ, as

Λ(n) =

{
log p n = pk with p prime

0 otherwise.

Lemma 1.43. We have that
ζ ′(s)

ζ(s)
= −

∑
1≤n

Λ(n)

ns
.

Proof. Using Lemma 1.20 we have that

log ζ(s) = −
∑
p

log(1− 1/ps).

By taking the derivative of both sides we have

ζ ′(s)

ζ(s)
=

d

ds
log ζ(s) = −

∑
p

log(p)

1− ps

= −
∑
p

log(p)

(
1

1− 1/ps
− 1

)
= −

∑
p

∑
1≤n

log(p)

pns
= −

∑
1≤n

Λ(n)

ns

Lemma 1.44 (Non-Vanishing of ζ(1 + it)). We have that

ζ(1 + it) ̸= 0 for all t ∈ R

Proof. Let
Ft(σ) = ζ(σ)3 ζ(σ + it)2 ζ(σ − it)2 ζ(σ + 2it) ζ(σ − 2it).

Note that since ζ(s) = ζ(s) we have that Ft(σ) is real valued. Using the Euler product expansion for σ > 1, we now
examine the series expansion of logFt(σ).

logFt(σ) =
∑
p

∑
1≤n

3 + 2p−it + 2pit + p−2it + p2it

npns
.

But now note that 3 + 2p−it + 2pit + p−2it + p2it = (1+ pit + p−it)2. Since pit and p−it are conjugate, we know that
1 + pit + p−it is real. Thus 3 + 2p−it + 2pit + p−2it + p2it is real and non-negative. By extension

logFt(σ) =
∑
p

∑
1≤n

3 + 2p−it + 2pit + p−2it + p2it

npns
≥ 0 =⇒ Ft(σ) ≥ 1. (5)

Now suppose that there exists real t ̸= 0 such that ζ(1+ it) = 0. Then we have that ζ(1− it) = 0 also. Now, since
ζ is analytic at 1+ it and 1− it we have that ζ(σ+ it) = O(σ− 1) and ζ(σ− it) = O(σ− 1) as σ → 1+. Additionally,
since ζ has an order 1 pole at s = 1, we have that ζ(σ) = O((σ − 1)−1) as σ → 1+. Noting that there can not be a
pole at ζ(σ ± 2it), we immediately have that limσ→1+ Ft(σ) = 0. This is a contradiction. Thus, ζ(1 + it) ̸= 0.

Lemma 1.45 (Bound on (ζ ′/ζ)(s)). For |t| > 3 there exists a constant C ∈ (0, 1/2) such that∣∣∣∣ζ ′ζ
∣∣∣∣≪ log2 |t| where σ > 1− C/ log |t|.
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Theorem 1.46 (Chebyshev Formulation of PNT). We have that

ψ(x) =
∑
n≤x

Λ(n) = x+O
(
x exp

(
−c
√
log x

))
where c is some constant. Here ψ is usually called the Chebyshev function.

Proof. Fix some smooth non-negative χ with compact support in [1/2, 2] such that

χ̃(0) =

∫ ∞

0

χ(y)
dy

y
= 1.

Additionally, note that by IBP we have that

χ̃(s) =

∫ ∞

0

χ(y) ys
dy

y
=

(
χ(y) ys

s

)∞

0

+
1

s

∫ ∞

0

χ′(y) ys dy =
1

s

∫ 2

1/2

χ′(y) ys dy ≪ 1

s
.

Additionally,

χ̃(s) =

∫ ∞

0

χ(y) exp(s log y)
dy

y

=

∫ ∞

0

χ(y)(1 + s log y +O(s2))
dy

y

=

∫ ∞

0

χ(y)
dy

y
+ s

∫ ∞

0

χ(y) log(y)
dy

y
+O(s2) = χ̃(0) + s

∫ 2

1/2

χ(y) log(y)
dy

y
+O(s2) = 1 +O(s).

Now fix ε > 0 and let χε(y) = χ(y1/ε)/ε. Then note that χε is non-negative with compact support in [2−ε, 2ε] and∫ ∞

0

χε(y)
dy

y
=

1

ε

∫ ∞

0

χ(y1/ε)
dy

y
=

∫ ∞

0

χ(u)
du

u
= 1;

this uses the substitution u = y1/ε which gives ε du/u = dy/y. Now let φ = 1x<1 and let φε = φ ∗ χε by Mellin
convolution. We then have that φε(x) = 1 for x < 2−ε and φε(x) = 0 for x > 2ε with some smooth behaviour on
the interval [2−ε, 2ε].

Now we switch focus. By the inverse Mellin transform we have that

1

2πi

∫
(2)

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds =
∑
n

Λ(n)φε(n/x) = ψ(x) +O(εx log x) (6)

since Λ(n) < log x for n < x and φε(n/x) differs from φ(n/x) by less than 1 on an interval of length εx up to
constant. This is because 2ε − 2−ε behaves like 2ε log 2 around ε = 0.

Now we pull contours. This gives us a new contour of integration, call this γ, which is such that we have the
nice bound on ζ ′/ζ along γ in accordance with Lemma 1.45. Pay attention to the fact that we must now include the
residue of the pole at s = 1. Thus,

1

2πi

∫
(2)

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds = φ̃ε(1)x
1 +

1

2πi

∫
γ

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds.

But now note that φ̃ε(1) = φ̃(1) · χ̃(ε) = 1 · (1 +O(ε)) = 1 +O(ε) since φ̃(s) = 1/s and χ̃(0) = 1. Thus,

1

2πi

∫
(2)

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds = x+
1

2πi

∫
γ

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds+O(εx). (7)

Now we focus on our integral over γ. Let T > 1, we break it up into three separate integrals∫
γ

=

∫ −T

−∞
+

∫ T

−T

+

∫ ∞

T

.

We focus on the third integral first. Note that∣∣∣∣∫ ∞

T

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds

∣∣∣∣ ≤ ∫ ∞

T

∣∣∣∣−ζ ′ζ (s)
∣∣∣∣ φ̃ε(s)x

σ ds≪
∫ ∞

T

log2 t

(
1

εt2

)
x dt≪ x

ε

∫ ∞

T

√
t dt

t2
≪ x

ε
√
T
. (8)
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since |−ζ/ζ| ≪ log2 |t| by Lemma 1.45, and φ̃ε(s) = φ̃(s) · χ̃ε(s) = χ̃(εs)/s ≪ 1/(εs2), and xσ < x for σ < 1.
Following an identical procedure yields the same bound on the first integral. Now for the second integral, note that∣∣∣∣∣
∫ T

−T

(
−ζ

′

ζ
(s)

)
φ̃ε(s)x

s ds

∣∣∣∣∣ ≤
∫ T

−T

∣∣∣∣−ζ ′ζ (s)
∣∣∣∣ φ̃ε(s)x

σ ds ≤ D

∫ T

−T

(
1

ε (1 + t2)

)
x1−C/ log T dt≪ x1−C/ log T

ε
. (9)

where D is taken to be the supremum of |ζ ′/ζ| over the curve (which is compact, so D exists and is finite). Now
putting together equations (6), (7), (8), and (9) we have that

ψ(x) +O(εx log x) = x+O(εx) +O

(
x

ε
√
T

)
+O

(
x1−C/ log T

ε

)
.

Now we optimize in T by letting
√
T = xC/ log T . Thus, log T =

√
2C log x. Now note that

x−C/ log T = exp

(
− C

log T
log x

)
= exp

(
− C√

2C log x
log x

)
= exp

(
−
√
C log x

2

)
.

So, by absorbing O(εx) into O(εx log x) and substituting the above, we have

ψ(x) = x+O(εx log x) +O

(
x

ε
exp

(
−
√
C log x

2

))
.

Now we optimize in ε by letting ε log x = exp
(
−
√
(C log x)/2

)
/ε. Thus,

ε = exp

(
−
√
C log x

8
− 1

2
log log x

)
.

Now note that

εx log x = x exp

(
−
√
C log x

8
− 1

2
log log x

)
exp(log log x) = x exp

(
−
√
C log x

8
+

1

2
log log x

)
.

So by substituting the above, we have

ψ(x) = x+O
(
x exp

(
−c
√
log x

)√
log x

)
where c =

√
C/8. We can absorb the

√
log x into the exponential to get the desired result.

Corollary 1.47 (Traditional PNT). We have that

π(x) ∼ x

log x

as x→ ∞.

Proof. Note that

Π(x) =
∑
n≤x

Λ(n)

log n
and

1

log n
=

1

log x
+

(
− 1

log t

) ∣∣∣∣∣
x

n

=
1

log x
+

∫ x

n

dt

t log2 t
.

Thus,

Π(x) =
ψ(x)

log x
+
∑
n≤x

Λ(n)

∫ x

n

dt

t log2 t
=
ψ(x)

log x
+

∫ x

2

ψ(t) dt

t log2 t
.

Now by the Chebyshev formulation of the PNT, we know that for all ϵ > 0 there exists xe such that for all x > xϵ
we have that ψ(x) = x+O(ϵx). Thus,

Π(x) =
x+O(ϵx)

log x
+

∫ x

2

t+O(ϵt)

t log2 t
dt = (1 +O(ϵ))

(
x

log x
+

∫ x

2

dt

log2 t

)
.
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Now note that ∫ x

2

dt

log2 t
=

∫ √
x

2

dt

log2 t
+

∫ x

√
x

dt

log2 t

≤ (
√
x− 2)

log2 2
+

(x−
√
x)

log2
√
x

≤
√
x

log2 2
+

4x

log2 x
= O

(
x

log2 x

)
.

Putting these together and letting ϵ→ 0 we know that

Π(x) ∼ x

log x
+O

(
x

log2 x

)
.

Now note that

Π(x) = π(x) +
π(x1/2)

2
+
π(x1/3)

3
+ . . . ≤ π(x) +

x1/2

2
+
x1/3

3
+ . . . = π(x) +O(

√
x).

So the desired result follows immediately since
√
x is O(x/ log2 x).

Corollary 1.48 (n-th Prime Growth). We have that pn ∼ n log n.

Proof. FAKE NEWS: From the traditional PNT we know that

n = π(pn) ∼
pn

log pn
.

Thus,

pn ∼ n log pn

∼ n log(n log pn) = n log n+ n log log pn

∼ n log n+ n log log(n log pn) = n log n+ n log log n+ n log log log pn

∼
...

∼ n log n+ n log logn+ n log log log n+ . . .

Ignoring the higher order terms, the desired result follows.

Proof. LEGIT: From the traditional PNT we know that

1 = lim
n→∞

π(n)

n logn
= lim

n→∞

π(pn)

pn/ log pn
= lim

n→∞

n

pn/ log pn
.

Thus, taking the reciprocal of the last equality and simplifying we have

1 = lim
n→∞

pn
n log pn

(10)

Taking the logarithm of both sides we have

0 = lim
n→∞

log pn − log n− log log pn = lim
n→∞

log pn

(
1− log n

log pn
− log log pn

log pn

)
= lim

n→∞
log pn

(
1− log n

log pn

)
,

since limn→∞ log log pn/ log pn = 0 trivially. But noting that limn→∞ log pn ̸= 0 we must have that

lim
n→∞

log n

log pn
= 1.

And now by the above and equation (10) note that

lim
n→∞

pn
n logn

= lim
n→∞

pn
n log pn

· log pn
log n

= 1 · 1 = 1.
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Corollary 1.49 (Primorial Growth). Let Pn be the n-th primorial, the product of the first n primes:

Pn =
∏
k≤n

pn.

We have that Pn ∼ exp((1 + o(1))n log n).

Proof. Note that∑
p≤x

log p = π(x) log x−
∑
p≤x

(log x− log p) = π(x) log x−
∑
p≤n

∫ x

p

dt

t
= π(x) log x−

∫ x

2

π(t)

t
dt.

From the traditional PNT we know that π(x) ∼ x/ log x+ o(x/ log x). Thus

π(x) log x ∼ x+ o(x) and

∫ x

2

π(t)

t
dt =

∫ x

2

1

log t
+ o

(∫ x

2

dt

log t

)
= o(x).

Thus
∑

p≤x log p = x+ o(x)− o(x) = x+ o(x). Now note that

Pn =
∏
k≤n

pn = exp

∑
p≤pn

log p

 = exp(pn + o(pn)).

From the above, we know that pn ∼ n log n; thus,

Pn ∼ exp((1 + o(1))n log n)

as desired.

Theorem 1.50 (Chebyshev Formulation of PNT for Arithmetic Progressions). We have that

ψa,q(x) =
1

φ(q)

∑
χ mod q

χ(a)
∑
n≤x

χ(n) Λ(n) =
x

φ(q)
+O

(
x exp

(
−c
√
log x

))
where c is some constant.

Proof. Fix some smooth non-negative χ with compact support in [1/2, 2] such that

χ̃(0) =

∫ ∞

0

χ(y)
dy

y
= 1.

Additionally, note that by IBP we have that

χ̃(s) =

∫ ∞

0

χ(y) ys
dy

y
=

(
χ(y) ys

s

)∞

0

+
1

s

∫ ∞

0

χ′(y) ys dy =
1

s

∫ 2

1/2

χ′(y) ys dy ≪ 1

s
.

Additionally,

χ̃(s) =

∫ ∞

0

χ(y) exp(s log y)
dy

y

=

∫ ∞

0

χ(y)(1 + s log y +O(s2))
dy

y

=

∫ ∞

0

χ(y)
dy

y
+ s

∫ ∞

0

χ(y) log(y)
dy

y
+O(s2) = χ̃(0) + s

∫ 2

1/2

χ(y) log(y)
dy

y
+O(s2) = 1 +O(s).

Now fix ε > 0 and let χε(y) = χ(y1/ε)/ε. Then note that χε is non-negative with compact support in [2−ε, 2ε] and∫ ∞

0

χε(y)
dy

y
=

1

ε

∫ ∞

0

χ(y1/ε)
dy

y
=

∫ ∞

0

χ(u)
du

u
= 1;
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this uses the substitution u = y1/ε which gives ε du/u = dy/y. Now let φ = 1x<1 and let φε = φ ∗ χε by Mellin
convolution. We then have that φε(x) = 1 for x < 2−ε and φε(x) = 0 for x > 2ε with some smooth behavior on the
interval [2−ε, ε].

Now we switch focus. By the inverse Mellin transform we have that

1

φ(q)

∑
χ mod q

χ(a)

2πi

∫
(2)

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

sds =
1

φ(q)

∑
χ mod q

χ(a)
∑
n

χ(n) Λ(n)φε(n/x) = ψa,q(x)+O(εx log x) (11)

since Λ(n) < log x for n < x and φε(n/x) differs from φ(n/x) by less than 1 on an interval of length εx up to
constant. This is because 2ε − 2−ε behaves like 2ε log 2 around ε = 0.

Now we pull contours. This gives us a new contour of integration, call this γ which is such that we have the nice
bound on L′

χ/Lχ along γ in accordance with Lemma 1.45. Pay attention to the fact that we must now include the
residue of the pole at s = 1. Thus

1

2πi

∫
(2)

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

s ds = φ̃(1)x1 δχ,χ0 +
1

2πi

∫
γ

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

s ds.

But now note that φ̃ε(1) = φ̃(1) · χ̃(ε) = 1 · (1 +O(ε)) since φ̃(s) = 1/s and χ̃(0) = 1. Thus,

1

φ(q)

∑
χ mod q

χ(a)

2πi

∫
(2)

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

s ds =
x

φ(q)
+

1

φ(q)

∑
χ mod q

χ(a)

2πi

∫
γ

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

s ds+O(εx). (12)

Now we focus on our integral over γ. Let T > 1, we break it up into three seperate integrals∫
γ

=

∫ T

−∞
+

∫ T

−T

+

∫ ∞

T

.

We focus on the third integral first. Note that∣∣∣∣∫ ∞

T

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

s ds

∣∣∣∣ ≤ ∫ ∞

T

∣∣∣∣−L′
χ

Lχ
(s)

∣∣∣∣ φ̃ε(s)x
σ ds≪

∫ ∞

T

log2 t

(
1

εt2

)
x dt≪ x

ε

∫ ∞

T

√
t dt

t2
≪ x

ε
√
T
. (13)

since
∣∣−L′

χ/Lχ

∣∣ ≪ log2 |t| by Lemma 1.45, and φ̃ε(s) = φ̃(s) · χ̃ε(s) = χ̃(εs)/s ≪ 1/(εs2), and xσ < x for σ < 1.
Following an identical procedure yields the same bound on the first integral. Now for the second integral, note that∣∣∣∣∣

∫ T

−T

(
−
L′
χ

Lχ
(s)

)
φ̃ε(s)x

s ds

∣∣∣∣∣ ≤
∫ T

−T

∣∣∣∣−L′
χ

Lχ
(s)

∣∣∣∣ φ̃ε(s)x
σ ds

≪
∫ T

−T

log2(1 + |t|)
(

1

ε (1 + t2)

)
x1−C/ log T dt≪ x1−C log T

ε
.

(14)

Now putting together equations (11), (12), (13), (14) we have that

ψa,q(x) +O(εx log x) =
x

φ(q)
+O(εx) +O

(
x

ε
√
T

)
+O

(
x1−C/ log T

ε

)
.

Now we optimize in T by letting
√
T = xC/ log T . Thus, log T =

√
2C log T . Now note that

x−C/ log T = exp

(
− C

log T
log x

)
= exp

(
− C√

2C log x
log x

)
= exp

(
−
√
C log x

2

)
.

So, by absorbing O(εx) into O(εx log x) and substituting the above, we have

ψa,q(x) =
x

φ(q)
+O(εx log x) +O

(
x

ε
exp

(
−
√
C log x

2

))
.

Now we optimize in ε by letting ε log x = exp
(
−
√

(C log x)/2
)
/ε. Thus,

ε = exp

(
−
√
C log x

8
− 1

2
log log x

)
.
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Now note that

εx log x = x exp

(
−
√
C log x

8
− 1

2
log log x

)
exp(log log x) = x exp

(
−
√
C log x

8
+

1

2
log log x

)
.

So by substituting the above, we have

ψa,q(x) =
x

φ(q)
+O

(
x exp

(
−c
√
log x

)√
log x

)
where c =

√
C/8. We can absorb the

√
log x into the exponential to get the desired result.

Corollary 1.51 (Traditional PNT for Arithmetic Progressions). For πa,q(x) the prime counting function of primes
less that x equivalent to a mod q, if (a, q) = 1 then we have that

πa,q(x) ∼
1

ϕ(q)
· x

log x

Proof. Note that

Πa,q(x) =
1

φ(q)

∑
χ mod q

χ(a)
∑
n≤x

χ(n) Λ(n)

log n
and

1

log n
=

1

log x
+

(
− 1

log t

) ∣∣∣∣∣
x

n

=
1

log x
+

∫ x

n

dt

t log2 t
.

Thus,

Πa,q(x) =
ψa,q(x)

log x
+

∑
n≤x

n≡a mod q

Λ(n)

∫ x

n

dt

t log2 t
=
ψa,q(x)

log x
+

∫ x

2

ψa,q(t) dt

t log2 t
.

Now by the Chebyshev formulation of the PNT, we know that for all ε > 0 there exists xε such that for all x > xε
we have that ψa,q(x) = x/φ(q) +O(εx). Thus,

Πa,q(x) =
x/φ(q) +O(εx)

log x
+

∫ x

2

t/φ(q) +O(εt)

t log2 t
dt = (1/φ(q) +O(ε))

(
x

log x
+

∫ x

2

dt

log2 t

)
.

Now note that ∫ x

2

dt

log2 t
=

∫ √
x

2

dt

log2 t
+

∫ x

√
x

dt

log2 t

≤ (
√
x− 2)

log2 2
+

(x−
√
x)

log2
√
x

≤
√
x

log2 2
+

4x

log2 x
= O

(
x

log2 x

)
.

Putting these together and letting ε→ 0 we know that

Πa,q(x) ∼
1

φ(q)
· x

log x
+O

(
x

log2 x

)
.

Now note that

Πa,q(x) = πa,q(x) +
∑

p≤x1/2

p2≡a mod q

1

2
+

∑
p≤x1/3

p3≡a mod q

1

3
+ . . . ≤ πa,q(x) +

x1/2

2
+
x1/3

3
+ . . . = πa,q(x) +O(

√
x).

So the desired result follows immediately since
√
x is O(x/ log2 x).

Theorem 1.52 (Bombieri-Vinogradov). For A ≥ 2 we have∑
q≤Q

max
a∈(Z/qZ)×

∣∣∣∣ψa,q(x)−
x

φ(q)

∣∣∣∣≪ x(log x)−A

with Q =
√
x (log x)−B with B = B(A).

Remark. Note that there are
√
x (log x)−B terms which sum to something on the order of x (log x)−A. So on average,

the error term is x1/2+ε. This is almost as good as what we get assuming RH, but this result is an average.
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1.5 Sieve Methods

Lemma 1.53 (Selberg’s Inequality). If λ is a sequence of reals with λ(1) = 1, then

∑
d|n

µ(d) ≤

∑
d|n

λ(d)

2

.

Proof. If n = 1 then ∑
d|n

µ(d) = µ(1) = 1 and

∑
d|n

λ(d)

2

= λ(1)2 = 1.

Thus the inequality holds. Otherwise, if n ̸= 1,

∑
d|n

µ(d) = 0 and 0 ≤

∑
d|n

λ(d)

2

.

Thus the inequality holds.

Lemma 1.54 (Modular Inversion Formula). If f and g are functions supported on square-free integers with

g(n) =
∑

a≡0 mod n

f(a),

then
f(n) = µ(n)

∑
a≡0 mod n

µ(a) g(a).

Proof. We have that

µ(n)
∑

a≡0 mod n

µ(a) g(a) = µ(n)
∑

a≡0 mod n

µ(a)
∑

b≡0 mod a

f(b) = µ(n)
∑
j

µ(jn)
∑
k

f(jkn).

Now if we let m = jk we reindex the sum

µ(n)
∑
m

f(mn)
∑
j|m

µ(jn) = µ2(n)
∑
m

f(mn)
∑
j|m

µ(m) = µ2(n) f(n) = f(n).

Theorem 1.55 (The Λ2 Sieve). Let A = (an) be a sequence of non-negative numbers with support depending on x,
and let P be a finite set of primes with P =

∏
p∈P p. For d | P we let

Ad(x) =
∑

n≡0 mod d

an = w(d)x+ r(d)

where w(d) is a multiplicative function with 0 < w(d) < 1 and |r(d)| ≤ d · w(d) for all d | P . Then, for an arbitrary
choice of 1 < D, we have

S(A, P ) =
∑

(n,P )=1

an ≤ x

H
+ (DH)2 where H =

∏
p|P
p≤D

(1− w(p))−1.

Proof. Recall that, by convolution, we have

1 = ζ(s) · ζ(s)−1 =

∑
1≤n

n−s

∑
1≤n

µ(n)n−s

 =⇒
∑
d|n

µ(d) =

{
1 n = 1

0 otherwise.
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Thus, by using Lemma 1.53, we have that

S(A, P ) =
∑

(n,P )=1

an =
∑
n

an
∑

d|(n,P )

µ(d) ≤
∑
n

an

 ∑
d|(n,P )

λ(d)

2

=
∑
d1|P

∑
d2|P

λ(d1)λ(d2)
∑

n≡0 mod [d1,d2]

an =
∑
d1|P

∑
d2|P

λ(d1)λ(d2)A[d1,d2](x)

where λ(1) = 1 and λ has some level of support D where λ(d) = 0 for all d ≥ D. Now breaking up the A terms

S(A, P ) = x
∑
d1|P

∑
d2|P

λ(d1)λ(d2)w([d1, d2]) +
∑
d1|P

∑
d2|P

λ(d1)λ(d2) r([d1, d2]) = x ·Q+ E.

Now note that (d1, d2) [d1, d2] = d1d2. So if we let d1 = ac and d2 = bc where c = (d1, d2), then abc = [d1, d2]. Using
this reindexing we have

Q =
∑
c

∑
ac|P

∑
bc|P

(a,b)=1

λ(ac)λ(bc)w(abc) =
∑
c

w(c)
∑
ac|P

∑
bc|P

λ(ac)λ(bc)w(ab)
∑

d|(a,b)

µ(d)

=
∑
d|P

µ(d)
∑
c

w(c)
∑∑

a≡0 mod d
b≡0 mod d

λ(ac)λ(bc)w(a)w(b)

=
∑
d|P

µ(d)
∑
c

w(c)

( ∑
a≡0 mod d

λ(ac)w(a)

)2

=
∑
d|P

µ(d)
∑
c

1

w(c)

( ∑
a≡0 mod d

λ(ac)w(ac)

)2

=
∑
d|P

µ(d)
∑
c

1

w(c)

( ∑
a≡0 mod cd

λ(a)w(a)

)2

.

So if we let m = cd then by re-indexing, we have

Q =
∑
m

 ∑
d|(m,P )

µ(d)

w(m/d)

( ∑
a≡0 mod m

λ(a)w(a)

)2

=
∑
m

x(m) y(m)2

where

x(m) =
∑

d|(m,P )

µ(d)

w(m/d)
and y(m) =

∑
a≡0 mod m

λ(a)w(a)

where y(m) also has level of support D where λ(d) = 0 for all d ≥ D. Note that, by Lemma 1.54, y(m) is subject to
the constraint that

λ(m)w(m) = µ(m)
∑

a≡0 mod m

µ(a) y(a) = µ(m)
∑
a≤D

a≡0 mod m

µ(a) y(a). (15)

In the case of m = 1, since λ(1) = 1 we have 1 = w(1) =
∑

a µ(a) y(a) (here 1 = w(1) comes from the multiplicativity
of w). Now by the method of Lagrange multipliers

∇

(∑
m

x(m) y(m)2

)
= 2

x(1) y(1)x(2) y(2)
...

 = λ

µ(1)µ(2)
...

 = ∇

(∑
a

µ(a) y(a)

)
.

Thus, y(a) = (λ/2) (µ(a)/x(a)). So we have that

1 = w(1) =
∑
a

µ(a) y(a) =
∑
a≤D

µ(a)

(
λµ(a)

2x(a)

)
=
λ

2

∑
a≤D

µ2(a)

x(a)
=
λH

2
where H =

∑
a square-free

a≤D

1

x(a)
.
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Thus, λ = 2/H and y(m) = (1/H)(µ(m)/x(m)). Substituting this into Equation (15) we find the optimal choice of
λ(m) is

λ(m) =
1

H
· µ(m)

w(m)

∑
a≤D

a≡0 mod m

µ2(a)

x(a)
. (16)

Additionally, with this choice of λ(m),

Q =
∑
m

x(m) y(m)2 =
1

H2

∑
m≤D

µ2(m)

x(m)
=

1

H
.

Note that

x(m) =
∑

d|(m,P )

µ(d)

w(m/d)
=

1

w(m)

∑
d|m

µ(d)w(d) δd|P =⇒ x(p) =
1− w(p)

w(p)
.

And now since x(a)−1 is multiplicative and supported on square-free integers, we have

H =
∑

a square-free
a≤D

1

x(a)
=
∏
p|P
p≤D

(
1 +

1

x(p)

)
=
∏
p|P
p≤D

(1− w(p))−1.

Now, all that remains is to estimate the E term. Returning to Equation (16) and applying the triangle inequality
we have

|λ(m)| ≤ 1

H
· 1

w(m)

∑
a≤D

a square-free
a≡0 mod m

1

x(a)
=

1

H
· 1

w(m)

∑
am≤D

am square-free

1

x(am)

=
1

H
· 1

x(m)w(m)

∑
am≤D

am squarefree

1

x(a)
≤ 1

H
· 1

x(m)w(m)

∑
a≤D

a square-free

1

x(a)
.

Noting that the sum on the RHS is exactly H, we have the inequality

|λ(m)| ≤ 1

x(m)w(m)
.

Thus,

|E| ≤
∑
d1|P

∑
d2|P

|λ(d1)| |λ(d2)| |r([d1, d2])| ≤
∑
d1|P
d1≤D

∑
d2|P
d2≤D

[d1, d2]w([d1, d2])

x(d1)x(d2)w(d1)w(d2)
.

Now note that w([d1, d2])w((d1, d2)) = w(d1d2), and since 0 < w((d1, d2)) < 1 we have that w([d1, d2]) ≤ w(d1d2).
Thus,

|E| ≤
∑
d1|P
d1≤D

∑
d2|P
d2≤D

d1d2 w(d1d2)

x(d1)x(d2)w(d1d2)
=

∑
d|P
d≤D

d

x(d)


2

≤ (DH)2

which completes the proof.

Definition 1.56 (Almost Prime). A k-almost prime is a number with at most k prime factors (inclusive).

Lemma 1.57. If n < x has no prime factors p < x1/(k+1) then n is a k-almost prime.

Theorem 1.58 (Brun’s Theorem). We have that ∑
p twin prime

1

p
<∞.
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Proof. Let us define a sequence Ax = (ax,n) from the indicator function

ax,n =

{
1 n = m (m+ 2) for some m < x

0 otherwise.

and let us define the product

Pz =
∏
p<z

p.

Now, if p < x is a twin prime, then n = p (p+ 2) is a 2-almost prime with ax,n = 1. Now note that if z = x1/3 then
if (n, Pz) = 1 then n is 2-almost prime by Lemma 1.57. Thus,

π2(x) ≤ S(Ax, Pz) =
∑

(n,Pz)=1

ax,n.

Now note that

Ad(x) =
∑

n≡0 mod d

ax,n = |{n ≡ 0 mod d : n = m (m+ 2), m < x}| = w(d)x+ r(d)

where w(p) = 1/p and |r(p)| ≤ 1 = p · w(p) when p = 2; likewise, w(p) = 2/p and |r(p)| ≤ 2 = p · w(p) when p ̸= 2.
Thus, we can apply the Λ2 sieve of Theorem 1.55 to get

π2(x) ≤ S(Ax, Pz) ≤
x

H
+ (DH)2 where H =

∏
p|Pz

p≤D

(1− w(p))−1.

By choosing D = z we give asymptotics on H,

H =
∏
p|Pz

(1− w(p))−1 = 2
∏

3≤p≤z

(1− 2/p)−1 ∼ 2
∏

3≤p≤z

(1− 1/p)−2 =
1

2

∏
p≤z

(1− 1/p)−2 ∼ 2e2γ log2 z

via Merten’s theorem. Thus, we have

π2(x) ≤ S(Ax, Pz) ≪
x

log2 z
+ (z log2 z)2 ≪ x

log2 x
+ x2/3 log4 x≪ x

log2 x
.

Now let bn = 1 if n is a twin prime and 0 otherwise. Then we have that

SN =
∑

p twin prime
p≤N

1

p
=
∑
n≤N

bn
n

=
1

N

∑
n≤N

bn −
∑
n<N

∑
k≤n

bn

(
1

n+ 1
− 1

n

)
=
π2(N)

N
+
∑
n<N

π2(n)

n (n+ 1)

by Abel summation. So applying our sieve estimate we have

SN =
π2(N)

N
+
∑
n≤N

π2(n)

n (n+ 1)
≪ 1

log2N
+
∑
n≤N

1

(n+ 1) log2 n
≤ 1

log2N
+
∑
n≤N

1

n log2 n
.

In the limit N → ∞ the leading term vanishes, so SN behaves however the summation behaves. So we apply the
integral test for convergence, with the substitution u = log x∫ ∞

2

dx

x log2 x
=

∫ ∞

log 2

du

u2
=

(
− 1

u

)∞

log 2

=
1

log 2
.

Thus the sum of the reciprocals of twin primes must converge.

Theorem 1.59. For any set of δ-spaced points br ∈ R/Z, and a set of complex numbers an with n ≤ N we have

∑
r

∣∣∣∣∣∣
∑
n≤N

an e(brn)

∣∣∣∣∣∣
2

≤ (δ−1 +N)
∑
n≤N

|an|2.
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Proof. Too complicated.

Lemma 1.60 (Fixed q w/ Additive Character). We have that

∑
a mod q

∣∣∣∣∣∣
∑
n≤N

an e(an/q)

∣∣∣∣∣∣
2

≤ (q +N)
∑
n≤N

|an|2.

Proof. Letting bn = n/q for n mod q, we note that these are δ-spaced points where δ = 1/q; so this lemma follows
as a simple corollary of the above.

Proof. ALTERNATIVE: Note that

S =
∑

a mod q

∣∣∣∣∣∣
∑
n≤N

an e(an/q)

∣∣∣∣∣∣
2

=
∑

a mod q

∑
m≤N

an e(am/q)

∑
n≤N

an e(−an/q)

 .

We rearrange the terms:

S =
∑
m≤N

∑
n≤N

aman
∑

a mod q

e(a(m− n)/q).

By orthogonality we know this inner sum is q if n ≡ m mod q and is 0 otherwise. So we have

S = q
∑∑
m,n≤N

m≡n mod q

aman = q
∑

r mod q

∣∣∣∣∣∣∣∣
∑
n≤N

n≡r mod q

an

∣∣∣∣∣∣∣∣
2

≤ q
∑

r mod q

⌈
N

q

⌉ ∑
n≤N

n≡r mod q

|an|2 ≤ (q +N)
∑
n≤N

|an|2

by Cauchy-Schwarz.

Lemma 1.61 (Average over q ≤ Q w/ Additive Character). We have that

∑
q≤Q

∑
a mod q

∣∣∣∣∣∣
∑
n≤N

an e(an/q)

∣∣∣∣∣∣
2

≤ (Q2 +N)
∑
n≤N

|an|2.

Proof. Note that the set of Farey fractions a/q where q ≤ Q and (a, q) = 1 is δ-spaced where δ = Q−2 because,∥∥∥∥aq − a′

q′

∥∥∥∥ =

∥∥∥∥aq′ − a′q

qq′

∥∥∥∥ ≥ 1

qq′
≥ Q−2.

So, this lemma follows as a simple corollary of the δ-spacing lemma.

Lemma 1.62 (Fixed q w/ Multiplicative Character). We have that

q

φ(q)

∑
χ∈Xq

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

≤ (q +N)
∑
n≤N

|an|2.

Proof. Note that

S =
∑
χ∈Xq

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

=
∑
χ∈Xq

∑
m≤N

amχ(m)

∑
n≤N

anχ(n)

 =
∑
m≤N

∑
n≤N

aman
∑
χ∈Xq

χ(m)χ(n).

By orthogonality we then know that

S = φ(q)
∑∑
m,n≤N

m≡n mod q

aman = φ(q)
∑

r mod q

∣∣∣∣∣∣∣∣
∑
n≤N

n≡r mod q

an

∣∣∣∣∣∣∣∣
2

.
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Thus, recalling the additive case in Lemma 1.60,

q

φ(q)
S = q

∑
r mod q

∣∣∣∣∣∣∣∣
∑
n≤N

n≡r mod q

an

∣∣∣∣∣∣∣∣
2

=
∑

a mod q

∣∣∣∣∣∣
∑
n≤N

an e(an/q)

∣∣∣∣∣∣
2

≤ (q +N)
∑
n≤N

|an|2.

Lemma 1.63 (Average over q ≤ Q w/ Multiplicative Character). We have that

∑
q≤Q

q

φ(q)

∑
χ∈Xq

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

≤ (Q2 +N)
∑
n≤N

|an|2.

Proof. Note that

S =
∑
χ∈Xq

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

=
∑
χ∈Xq

∑
m≤N

amχ(m)

∑
n≤N

anχ(n)

 =
∑
m≤N

∑
n≤N

aman
∑
χ∈Xq

χ(m)χ(n).

Now applying orthogonality relations we have that

S = φ(q)
∑∑
m,n≤N

m≡n mod q

aman = φ(q)
∑

r mod q

∣∣∣∣∣∣∣∣
∑
n≤N

n≡r mod q

an

∣∣∣∣∣∣∣∣
2

.

Recalling the proof of Lemma 1.61, we have that

∑
q≤Q

q

φ(q)
S =

∑
q≤Q

q
∑

r mod q

∣∣∣∣∣∣∣∣
∑
n≤N

n≡r mod q

an

∣∣∣∣∣∣∣∣
2

=
∑
q≤Q

∑
a mod q

∣∣∣∣∣∣
∑
n≤N

ane(an/q)

∣∣∣∣∣∣
2

≤ (Q2 +N)
∑
n≤N

|an|2.

Theorem 1.64 (Large-Sieve Type Sum). If am and bn are sequences defined on m ≤M and n ≤ N with MN ≤ x
with M,N > xδ and the bn satisfy the Seigel-Wielfish condition, then

∑
q≤Q

max
(a,q)=1

∣∣∣∣∣∣
∑∑

mn≡a mod q

ambn − 1

φ(q)

∑∑
(mn,q)=1

ambn

∣∣∣∣∣∣≪A x(log x)−A

where Q = x1/2(log x)−B .

Lemma 1.65 (Vaughn’s Identity). We have that

Λ(n) =
∑
m|n
m≤z

µ(m) log(n/m)−
∑∑
cm|n

c≤y,m≤z

µ(m) Λ(c) +
∑∑
cm|n

c>y,m>z

µ(m) Λ(c).
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2 Modular Forms

2.1 Modular Forms and Cusp Forms with Examples

Definition 2.1 (Slash Operator). For γ ∈ GL2(R) we let f |kγ(z) = det γk/2 j(γ, z)−k f(γz).

Definition 2.2 (Modular Form). For Γ a subgroup of SL2(Z), a weight k modular form f : C → C on Γ is a
holomorphic function such that f(z) is bounded as z → i∞ and satisfies

f(γz) = j(γ, z)k f(z) or equivalently f |kγ(z) = f(z)

where γ =
(
a b
c d

)
∈ Γ with γz = (az + b)/(cz + d) and j(γ, z) = cz + d.

Definition 2.3 (Cusp Form). For Γ a subgroup of SL2(Z), a weight k cusp form f : C → C on Γ is a weight k
modular form such that f(γ∞) = 0 for all γ ∈ Γ and has exponential decay as y → ∞.

Lemma 2.4 (Equivalent Condition on Cusp Forms). If f is a weight k modular form, then f is a weight k cusp
form if and only if f(∞) = 0.

Proof. ( =⇒ ) Let f be a weight k cusp form. Then f(γ∞) = 0 for all γ =
(
a b
c d

)
∈ Γ. By modularity we have that

f(∞) = f(γ−1γ∞) = j(γ−1, γ∞)k f(γ∞) = 0k · 0 = 0.

( ⇐= ) Now suppose that f is a weight k modular form such that f(∞) = 0. Then for all γ =
(
a b
c d

)
∈ Γ, by

modularity we have that
f(γ∞) = j(γ,∞)k f(∞) = (a/c)k · 0 = 0.

Thus, f(γ∞) = 0 for all γ ∈ Γ and f is a weight k cusp form.

Lemma 2.5 (Fourier Expansion of Cusp Forms). If f is a cusp form with Fourier expansion

f(z) =
∑
0≤m

am e(mz)

then it must be that a0 = 0.

Proof. Suppose that a0 ̸= 0, then f(i∞) = a0 ̸= 0. But by the previous lemma we know this can not be the case, so
it must be that a0 = 0.

Definition 2.6 (Eisenstein Series). We define the weight k Eisenstein series as

Gk(z) =
∑∑

(m,n)̸=(0,0)

(mz + n)−k.

We also have the renormalization

Ek(z) =
Gk(z)

2 ζ(k)
=
∑∑
(m,n)=1

(mz + n)−k.

Definition 2.7 (∆-Function). Let us define ∆ via

∆ =
E3

4 − E2
6

1728
.

Definition 2.8 (Poincare Series). Let Γ∞ be the subset of Γ0(N) which are upper triangular. We have that

Pm,k(z) =
∑

γ∈Γ∞/Γ0(N)

e(mz)|kγ =
∑∑
(cN,d)=1

c≥0

e(mγcN,dz)

(cNz + d)k
.

Remark. Note that P0,k(z) = Ek(z) on Γ0(1) = Γ.

Lemma 2.9 (Fourier Expansion of Eisenstein Series). For all k we have that

Ek(z) = 1− 2k

Bk

∑
1≤m

σk−1(m) e(mz).
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Proof. Recall the Weierstrass factorization for sinπz:

sinπz = πz
∏
1≤n

(1− z/n)(1 + z/n).

Taking the logarithm of both sides we have

log(sinπz) = log(πz) +
∑
1≤n

log(1− z/n) + log(1 + z/n).

Taking the derivative of both sides we have

π cotπz =
1

z
+
∑
1≤n

(
1

z − n
+

1

z + n

)
=
∑
n∈Z

1

z + n
.

But also note that

π cotπz = πi

(
e(z) + 1

e(z)− 1

)
= πi− 2πi

1− e(z)
= πi− 2πi

∑
0≤d

e(dz).

Thus,∑
n∈Z

1

z + n
= πi− 2πi

∑
0≤d

e(dz) =⇒

(−1)k k!
∑
n∈Z

1

(z + n)k+1
=

dk

dzk

∑
n∈Z

1

z + n
=

dk

dzk

πi− 2πi
∑
0≤d

e(dz)

 = −2πi (2πi)k
∑
0≤d

dk e(dz).

And so, via algebraic manipulation, we have that∑
n∈Z

1

(z + n)k+1
=

(−2πi)k+1

k!

∑
0≤d

dk e(dz).

Now note that

Gk(z) =
∑∑

(m,n)̸=(0,0)

(mz + n)−k = 2 ζ(k) + 2
∑
1≤m

∑
n∈Z

(mz + n)−k = 2 ζ(k) + 2

(
(−2πi)k

(k − 1)!

)∑
1≤m

∑
0≤d

dk−1 e(dmz).

Now since σk(n) =
∑

d|n d
k we have that

Gk(z) = 2 ζ(k) + 2

(
(−2πi)k

Γ(k)

)∑
1≤n

σk(n) e(nz).

Dividing through by 2 ζ(k) we have that

Ek(z) = 1 +
(−2πi)k

ζ(k) Γ(k)

∑
1≤n

σk−1(n) e(nz).

Since (−2πi)k/(ζ(k) Γ(k)) = −2k/Bk the result immediately follows.

Definition 2.10 (Fourier Expansion of ∆-Function). We define τ as the coefficients of the Fourier expansion of ∆:

∆(z) =
∑
1≤m

τ(m) e(mz).

Note that since ∆ is a weight 12 cusp form, we have that τ(0) = 0.

Lemma 2.11 (Fourier Expansion of Poincare Series). For m > 0 we have that

Pm,k(z) =
∑
0≤n

2δm,n + 2πik
( n
m

)(k−1)/2∑
1≤c

S(m,n, cN)

cN
Jk−1

(
4π

√
mn

cN

) e2πinz.
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Proof. Note that if

Pm,k(z) =
∑
0≤n

ane
2πinz

then we have that

an =

∫ 1+iy

0+iy

Pm,k(z) e(−nz) dz.

Substituting our definition of Pm,k(z) we have that

an =
∑∑
(cN,d)=1

c≥0

∫ 1+iy

0+iy

e(mγcN,dz)

(cNz + d)k
e(−nz) dz.

Now focusing on the c = 0 terms we have∑
d=±1

∫ 1+iy

0+iy

e(mz) e(−nz) dz = 2δm,n.

Thus, breaking our remaining sum over d into equivalence classes we have

an = 2δm,n +
∑
1≤c

∑
d∈(Z/cNZ)×

∑
l∈Z

∫ 1+iy

0+iy

e(mγcN,d+cNlz)

(cN(z + l) + d)k
e(−nz) dz.

Now noting that a ≡ d−1 ≡ (d+ cNl)−1 mod cN , we have that

γc,d+cNlz =
az + (a(d+ cNl)− 1)/(cN)

cNz + (d+ cNl)
=
a(z + l) + (ad− 1)/(cN)

cN(z + l) + d
= γcN,d(z + l).

So applying this and the substitution z 7→ z − l we have

an = 2δm,n +
∑
1≤c

∑
d∈(Z/cNZ)×

∑
l∈Z

∫ l+1+iy

l+iy

e(mγcN,dz)

(cNz + d)k
e(−nz) dz

= 2δm,n +
∑
1≤c

∑
d∈(Z/cNZ)×

∫ ∞+iy

−∞+iy

e(mγcN,dz)

(cNz + d)k
e(−nz) dz

Now note that

γcN,dz =
az + (ad− 1)/(cN)

cNz + d
=

a

cN
− 1

(cN)(cNz + d)
;

thus,

an = 2δm,n +
∑
1≤c

∑
d∈(Z/cNZ)×

∫ ∞+iy

−∞+iy

(cNz + d)−k e

(
ma

cN
− m

(cN)(cNz + d)

)
e(−nz) dz.

Now substituting z 7→ z − d/(cN) we have

an = 2δm,n +
∑
1≤c

∑
d∈(Z/cNZ)×

∫ ∞+iy

−∞+iy

(cNz)−k e

(
ma

cN
− m

(cN)2z

)
e

(
−nz + nd

cN

)
dz

= 2δm,n +
∑
1≤c

∑
d∈(Z/cNZ)×

e

(
ma+ nd

cN

)∫ ∞+iy

−∞+iy

(cNz)−ke

(
− m

(cN)2z
− nz

)
dz.

Now note the Kloosterman sum in the formula, and making the substitution z 7→ −
√
m/n (z/c) we have

an = 2δm,n +
( n
m

)k/2∑
1≤c

S(m,n, cN)

∫ ∞+iy

−∞+iy

z−ke

(√
mn

cN
(z + z−1)

)
dz.

This last integeral can be massaged into the appropriate J-Bessel function (and scaling factors) with some manipu-
lation.
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2.2 The Space of Mk and Sk

Theorem 2.12 (Valence Formula). Let vp(f) be the order of vanishing a non-zero function f at a point z = p. Then
if f is a weight k modular form we have that ∑

z∈H/SL2(Z)

vz(f)

wz
=

k

12

where wz = 2 if z = i, wz = 3 if z = ζ6, and wz = 1 otherwise.

Proof. (Sketch) Apply the argument principle to the contour going around the fundamental domain with cutouts
around the points at i, ζ6, ζ3, and ∞.

Lemma 2.13 (Non-Vanishing of ∆). We have that ∆ is non-vanishing on H except for a simple zero at i∞.

Proof. Note that ∆ is of weight 12 and ∆(i∞) = 0 via the Fourier expansion coming from

∆ =
E3

4 − E2
6

1728
.

Thus we know that vi∞(∆) ≥ 1 and via the Valence formula we have

vi∞(∆) +
∑

z∈(H/SL2(Z))\{i∞}

vz(∆)

wz
= 1.

Since ∆ is holomorphic, we know that vz(∆) ≥ 0 for all z; thus it must be the case that vi∞(∆) = 1 and vz(∆) = 0
for all z ̸= i∞ as desired.

Lemma 2.14 (Preliminary to Characterizing the Space Mk I). For k < 0 there are no modular forms of weight k.

Proof. Suppose that f is a modular form of weight k < 0. Then by the valence formula we know that there exists
z ∈ H/SL2(Z) such that vz(f) < 0. But this would imply f is non-holomorphic, contradiction.

Lemma 2.15 (Preliminary to Characterizing the Space Mk II). We have that Mk = ∆ ·Mk−12 ⊕ C · Ek.

Proof. Let f ∈Mk and let a0 = f(i∞). Now note that f − a0Ek has a zero at i∞; thus, since ∆ is non-vanishing on
H and has a simple zero at i∞ (per Lemma 2.13), we have that (f − a0Ek)/∆ = g is a weight k− 12 modular form.
Thus,

f = ∆ · g + a0Ek

and the result immediately follows.

Theorem 2.16 (Characterization of the Space Mk). We have the following results on the space Mk.

• If k is odd then Mk = 0.

• If k = 0 then Mk = C.

• If k = 2, then Mk = 0.

• If 4 ≤ k ≤ 10 is even, then Mk = C · Ek.

• If k ≥ 12, then Mk = ∆ · Mk−12 ⊕ C · Ek.

Proof. We cover each of the six cases above:

• Note that if there exists a non-zero modular form f of odd weight k on SL2(Z), then for γ = −I2 we have that

f(z) = f(γz) = (−1)k f(z) = −f(z).

This is a contradiction because it implies that f vanishes everywhere.

• If k = 0 then f(γz) = f(z) for all γ ∈ Γ. For fixed z, since the set {γz : γ ∈ Γ} has accumulation points, we
know that f(z) is constant by the identity theorem.
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• If k = 2 then there is no integral solution to the valence formula because any vanishing point that might exist
contributes at least +1/3. Thus M2 = 0.

• If 4 ≤ k ≤ 10 is even, then Mk = ∆ ·Mk−12 ⊕ C · Ek with k − 12 < 0. So by Lemma 2.14, Mk = C · Ek.

• This is exactly Lemma 2.15.

Corollary 2.17 (Dimension of Mk). For k ≥ 0, we have that

dimCMk =


⌊
k

12

⌋
+ 1 k ̸≡ 2 mod 12⌊

k

12

⌋
k ≡ 2 mod 12

Proof. Trivial. It immediately follows via downwards induction.

Theorem 2.18 (E4 and E6 Generate M). We have M = C[E4, E6] where M is the space of modular forms.

Proof. Trivially, M0, M2, M4, M6 ⊆ C[E4, E6] by Theorem 2.16. Now note that E2
4 is a weight 8 modular form,

so by Theorem 2.16 we know that E2
4 = cE8 for some non-zero c ∈ C. Thus, M8 ⊆ C[E4, E6]. Likewise, since

E4E6 is a weight 10 modular form, by Theorem 2.16 we know that E4E6 = cE10 for some non-zero c ∈ C. Thus,
M10 ⊆ C[E4, E6].

Now if we suppose that Mk ⊆ C[E4, E6], let us show that Mk+12 ⊆ C[E4, E6]. Note there exists a, b such that
Ea

4E
b
6 is a weight k + 12 modular form, so by Theorem 2.16 we know that

Ea
4E

b
6 = ∆ · f + c · Ek+12

for some c ∈ C and f ∈Mk. Note that c ̸= 0 since Ea
4E

b
6 ̸∈ Sk+12; so, since f ∈Mk ⊆ C[E4, E6] we know that

Ek+12 = c−1
(
Ea

4E
b
6 −∆ · f

)
is in C[E4, E6]. Since, Mk+12 = ∆ ·Mk ⊕ C · Ek+12 with Mk ⊆ C[E4, E6] and Ek+12 ∈ C[E4, E6], we know that
Mk+12 ⊆ C[E4, E6] as desired. Now applying induction we have that Mk ⊆ C[E4, E6] for all even k. Since

M =
⋃
k

M2k

as per Theorem 2.16, we know that M ⊆ C[E4, E6]. The reverse inclusion is trivial and the result follows.

Theorem 2.19 (Characterization of the Space Sk). We have that Sk = ∆ ·Mk−12.

Proof. Let π : Mk−12 → Sk via f 7→ ∆ · f . Note that if g ∈ Sk then g/∆ ∈ Mk−12 because ∆ is non-vanishing on
H and vi∞(g) ≥ 1 with vi∞(∆) = 1. So π is surjective. Additionally, note that if ∆ · f = 0 then f = 0 since ∆ is
non-vanishing on H. So π is injective.

Thus, π is bijective and the result immediately follows.

Corollary 2.20 (Dimension of Sk). For k < 12 we have that dimC Sk = 0. Otherwise, dimC Sk = dimCMk − 1.

Proof. For k < 12 we know that Sk = ∆ ·Mk−12 with k − 12 < 0 via Theorem 2.19, and we know that Mk−12 is
empty via Lemma 2.14; thus, Sk is empty for k < 12. So dimC Sk = 0.

For k ≥ 12 we know that Sk = ∆ · Mk−12 with k − 12 ≥ 0 via Theorem 2.19, and we know that Mk =
∆ ·Mk−12 ⊕ C · Ek via Lemma 2.15. Thus, dimC Sk = dimCMk−12 and dimCMk = dimCMk−12 + 1, by algebraic
manipulation the result immediately follows.

Lemma 2.21 (Arithmetic Identity on σ7 from E2
4 = E8). We have that

σ7(m) = σ3(m) + 120
∑

0<n<m

σ3(n)σ3(m− n).
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Proof. From Corollary 2.17 we know that dimCM8 = 1. Thus, E2
4 = E8 up to constant multiple. Of course, Lemma

2.9 gives us that the Fourier expansion of E4 and E8 both have constant term 1. So, E2
4 = E8 exactly.

From Lemma 2.9 we know that

E4 = 1− 8

B4

∑
1≤m

σ3(m) e(mz) and E8 = 1− 16

B8

∑
1≤m

σ7(m) e(mz).

Now we compute

E2
4 =

1− 8

B4

∑
1≤m

σ3(m) e(mz)

2

= 1− 16

B4

∑
1≤m

σ3(m) e(mz) +
64

B2
4

∑
1≤m

σ3(m) e(mz)

2

.

Now we use convolution to square the summation on the right

E2
4 = 1 +

∑
1≤m

(
− 16

B4
σ3(m) +

64

B2
4

∑
0<n<m

σ3(n)σ3(m− n)

)
e(mz).

Now we match Fourier coefficients to get

− 16

B8
σ7(m) = − 16

B4
σ3(m) +

64

B2
4

∑
0<n<m

σ3(n)σ3(m− n).

Recalling that B4 = −1/30 and B8 = −1/30 we get

σ7(m) = σ3(m) + 120
∑

0<n<m

σ3(n)σ3(m− n).

Lemma 2.22 (Arithmetic Identity on σ9 from E4E6 = E10). We have that

σ9(m) = −10

11
σ3(m) +

21

11
σ5(m) +

5040

11

∑
0<n<m

σ3(n)σ5(m− n).

Proof. From Corollary 2.17 we know that dimCM10 = 1. Thus, E4E6 = E10 up to constant multiple. Of course,
Lemma 2.9 gives us that the Fourier expansion of E4, E6, and E10 all have constant term 1. So E4E6 = E10 exactly.

From Lemma 2.9 we know that

E4 = 1− 8

B4

∑
1≤m

σ3(m) e(mz) and E6 = 1− 12

B6

∑
1≤m

σ5(m) e(mz).

Now we compute

E4E6 =

1− 8

B4

∑
1≤m

σ3(m) e(mz)

1− 12

B6

∑
1≤m

σ5(m) e(mz)


= 1− 8

B4

∑
1≤m

σ3(m) e(mz)− 12

B6

∑
1≤m

σ5(m) e(mz) +
96

B4B6

∑
1≤m

σ3(m) e(mz)

∑
1≤m

σ5(m) e(mz)

 .

Now we use convolution to evaluate the product of sums on the right

E4E6 = 1 +
∑
1≤m

(
− 8

B4
σ3(m)− 12

B6
σ5(m) +

96

B4B6

∑
0<n<m

σ3(n)σ5(m− n)

)
e(mz).

Now we match Fourier coefficients to get

− 20

B10
σ9(m) = − 8

B4
σ3(m)− 12

B6
σ5(m) +

96

B4B6

∑
0<n<m

σ3(n)σ5(m− n).

36



Recalling that B4 = −1/30, B6 = 1/42, and B10 = 5/66 we get

σ9(m) = −10

11
σ3(m) +

21

11
σ5(m) +

5040

11

∑
0<n<m

σ3(n)σ5(m− n).

Lemma 2.23 (Arithmetic Identity on σ13 from E4E10 = E14). We have that

σ13(m) = −10σ3(m) + 11σ9(m) + 2640
∑

0<n<m

σ3(n)σ9(m− n).

Proof. From Corollary 2.17 we know that dimCM14 = 1. Thus, E4E10 = E14 up to constant multiple. Of course,
Lemma 2.9 gives us that the Fourier expansion of E4, E10, and E14 all have constant term 1. So E4E10 = E14

exactly.
From Lemma 2.9 we know that

E4 = 1− 8

B4

∑
1≤m

σ3(m) e(mz) and E10 = 1− 20

B10

∑
1≤m

σ9(m) e(mz).

Now we compute

E4E10 =

1− 8

B4

∑
1≤m

σ3(m) e(mz)

1− 20

B10

∑
1≤m

σ9(m) e(mz)


= 1− 8

B4

∑
1≤m

σ3(m) e(mz)− 20

B10

∑
1≤m

σ9(m) e(mz) +
160

B4B10

∑
1≤m

σ3(m) e(mz)

∑
1≤m

σ9(m) e(mz)

 .

Now we use convolution to evaluate the product of sums on the right

E4E10 = 1 +
∑
1≤m

(
− 8

B4
σ3(m)− 20

B10
σ9(m) +

160

B4B10

∑
0<n<m

σ3(n)σ9(m− n)

)
e(mz).

Now we match Fourier coefficients to get

− 28

B14
σ13(m) = − 8

B4
σ3(m)− 20

B10
σ9(m) +

160

B4B10

∑
0<n<m

σ3(n)σ9(m− n).

Recalling that B4 = −1/30, B10 = 5/66, and B14 = 7/6 we get

σ13(m) = −10σ3(m) + 11σ9(m) + 2640
∑

0<n<m

σ3(n)σ9(m− n).

Lemma 2.24 (Arithmetic Identity on σ13 from E6E8 = E14). We have that

σ13(m) = 21σ5(m)− 20σ7(m) + 10080
∑

0<n<m

σ5(n)σ7(m− n).

Proof. From Corollary 2.17 we know that dimCM14 = 1. Thus E6E8 = E14 up to constant multiple. Of course,
Lemma 2.9 gives us that the Fourier expansion of E6, E8, and E14 all have constant term 1. So E6E8 = E14 exactly.

From Lemma 2.9 we know that

E6 = 1− 12

B6

∑
1≤m

σ5(m) e(mz) and E8 = 1− 16

B8

∑
1≤m

σ7(m) e(mz).
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Now we compute

E6E8 =

1− 12

B6

∑
1≤m

σ5(m) e(mz)

1− 16

B8

∑
1≤m

σ7(m) e(mz)


= 1− 12

B6

∑
1≤m

σ5(m) e(mz)− 16

B8

∑
1≤m

σ7(m) e(mz) +
192

B6B8

∑
1≤m

σ5(m) e(mz)

∑
1≤m

σ7(m) e(mz)

 .

Now we use the convolution to evaluate the product of sums on the right

E6E8 = 1 +
∑
1≤m

(
− 12

B6
σ5(m)− 16

B8
σ7(m) +

192

B6B8

∑
0<n<m

σ5(n)σ7(m− n)

)
e(mz).

Now we match Fourier coefficients to get

− 28

B14
σ13(m) = − 12

B6
σ5(m)− 16

B8
σ7(m) +

192

B6B8

∑
0<n<m

σ5(n)σ7(m− n).

Recalling that B6 = 1/42, B8 = −1/30, and B14 = 7/6 we get

σ13(m) = 21σ5(m)− 20σ7(m) + 10080
∑

0<n<m

σ5(n)σ7(m− n).

Lemma 2.25 (Computing τ from E2
6 − E12 = a∆). We have that

τ(m) =
65

756
σ11(m) +

691

756
σ5(m)− 691

3

∑
0<n<m

σ5(n)σ5(m− n).

Proof. Recall from Lemma 2.16 that M12 = ∆ ·M0 ⊕ C · E12 and M0 = C. Thus, M12 = ∆ · C ⊕ C · E12. Thus,
since E2

6 is a weight 12 modular form, we have that E2
6 = a∆+ bE12 for some a, b ∈ C. Of course, Lemma 2.9 gives

us that the Fourier expansion of E6 and E12 have constant term 1, and we know that the constant term of a cusp
form is 0. Thus, b = 1 and we have that E2

6 − E12 = a∆.
From Lemma 2.9 we know that

E6 = 1− 12

B6

∑
1≤m

σ5(m) e(mz) and E12 = 1− 24

B12

∑
1≤m

σ11(m) e(mz).

Now we compute

E2
6 =

1− 12

B6

∑
1≤m

σ5(m) e(mz)

2

= 1− 24

B6

∑
1≤m

σ5(m) e(mz) +
144

B2
6

∑
1≤m

σ5(m) e(mz)

2

.

Now we use convolution to square the summation on the right

E2
6 = 1 +

∑
1≤m

(
− 24

B6
σ5(m) +

144

B2
6

∑
0<n<m

σ5(n)σ5(m− n)

)
e(mz).

Now we subtract off E12 to get

E2
6 − E12 =

∑
1≤m

(
24

B12
σ11(m)− 24

B6
σ5(m) +

144

B2
6

∑
0<n<m

σ5(n)σ5(m− n)

)
e(mz).

Now we match the m = 1 Fourier coefficient to get

a = a τ(1) =
24

B12
σ11(1)−

24

B6
σ5(1) +

144

B2
6

∑
0<n<1

σ5(n)σ5(1− n) =
24

B12
− 24

B6
.
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Now we match Fourier coefficients to get(
24

B12
− 24

B6

)
τ(m) =

24

B12
σ11(m)− 24

B6
σ5(m) +

144

B2
6

∑
0<n<m

σ5(n)σ5(m− n).

Recalling that B6 = 1/42 and B12 = −691/2730 we get

τ(m) =
65

756
σ11(m) +

691

756
σ5(m)− 691

3

∑
0<n<m

σ5(n)σ5(m− n).
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2.3 L-Functions Associated with Cusp Forms

Definition 2.26 (L-Functions Associated with Cusp Forms). Given a cusp form f ∈ Sk with Fourier expansion

f(z) =
∑
1≤n

ane
2πinz

we define the L-function associated with this modular form as L(f, s) where

L(f, s) =
∑
1≤n

an
ns
.

Lemma 2.27 (Hecke Bound for Cusp Forms). Given a cusp form f ∈ Sk with Fourier expansion

f(z) =
∑
1≤n

ane
2πinz

we have that |an| ≪ nk/2.

Proof. Since f ∈ Sk we know that f has exponential decay as y → ∞ and that f is Γ-periodic. Thus the function
yk/2|f | is bounded on H, and we have that |f | ≪ y−k/2.

Noting that

f(z) =
∑
1≤n

ane
2πinz and f(z) =

∑
1≤n

ane
−2πinz

by Parseval’s identity we know that

∑
n∈Z

|an|2e−4πny =
∑
n∈Z

(
ane

2πinz
) (
ane

−2πinz
)
=

∫ 1

0

|f(z)|2 dz ≪ y−k.

So we have that ∑
n≤N

|an|2 ≤ e4πNy
∑
n≤N

|an|2e−4πny ≤ e4πNy
∑
n∈Z

|an|2e−4πny ≪ y−ke4πNy

for all y > 0. Choosing y = 1/N we have that

|aN |2 ≤
∑
n≤N

|an|2 ≪ (1/N)−ke4πN (1/N) = e4πNk ≪ Nk.

Taking the square root of both sides yields the desired result.

Lemma 2.28. If f ∈ Sk, then We have that L(f, s) is absolutely convergent for σ > 1 + k/2.

Proof. If σ > 1 + k/2 then we know that |an/ns| ≪ n−(σ−k/2) with σ − k/2 > 1 by the Hecke bound. Thus we have
absolute convergence of L(f, s) and |L(f, s)| ≪ ζ(σ − k/2) by the triangle inequality.

Theorem 2.29 (Functional Equation for L-Functions Associated with Cusp Forms). For f ∈ Sk, we can extend
L(f, s) to an entire function, and if

Λ(f, s) = M(f(it))(s) = (2π)−s Γ(s)L(f, s)

then we have that
Λ(f, s) = ik Λ(f, k − s).

Proof. Recall that for all σ > 0, Γ(s) is defined as

Γ(s) =

∫ ∞

0

e−tts−1 dt.

Now if we do the substitution t = 2πnu, then after some manipulation we have that

(2πn)−s Γ(s) =

∫ ∞

0

e−2πntts−1 dt.
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Now if we take the sum over all n ≥ 1 with the coefficients an.

(2π)−s L(f, s) Γ(s) =
∑
1≤n

an (2πn)
−s Γ(s) =

∑
1≤n

an

∫ ∞

0

e−2πntts−1 dt.

Now note that, using Hecke’s bound and the substitution u = 2πnt we have∑
1≤n

∫ ∞

0

∣∣an e−2πntts−1
∣∣ dt≪∑

1≤n

nk/2
∫ ∞

0

e−2πnttσ−1 dt

= (2π)−σ
∑
1≤n

n−(σ−k/2)

∫ ∞

0

e−uuσ−1 du =
ζ(σ − k/2) Γ(σ)

(2π)σ
.

For σ > 1 + k/2 we know this converges. So by Fubini-Tonelli, when σ > 1 + k/2, we can interchange the sum and
the integral as needed.

(2π)−s L(f, s) Γ(s) =
∑
1≤n

an

∫ ∞

0

e−2πntts−1 dt =

∫ ∞

0

∑
1≤n

ane
−2πnt ts−1 dt =

∫ ∞

0

f(it) ts−1 dt = M(f(it))(s).

Now note that

(2π)−s L(f, s) Γ(s) =

∫ ∞

0

f(it) ts−1 dt =

∫ 1

0

f(it) ts−1 dt+

∫ ∞

1

f(it) ts−1 dt.

Now using the substitution t = 1/u on the first integral we have∫ 1

0

f(it) ts−1 dt = −
∫ 1

∞
f

(
− 1

iu

)
u−s−1 du = ik

∫ ∞

1

f(iu)uk−s−1 du.

So we have that

(2π)−s L(f, s) Γ(s) = ik
∫ ∞

1

f(it) tk−s−1 dt+

∫ ∞

1

f(it) ts−1 dt.

Note that this integral is entire since f(it) has exponential decay as t→ ∞ because f is a cusp form. Thus, we can
extend L(f, s) to an entire function. Returning to our line of thought, by replacing s with k − s and multiplying
through by ik we have

ik (2π)−(k−s) L(f, k − s) Γ(k − s) = i2k
∫ ∞

1

f(it) ts−1 dt+ ik
∫ ∞

1

f(it) tk−s−1 dt.

We know that k must be even since f is a cusp form, thus i2k = 1. So we have that

Λ(f, s) = (2π)−s Γ(s)L(f, s) = ik (2π)−(k−s) Γ(k − s)L(f, k − s) = ik Λ(f, k − s)

as desired.
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2.4 Hecke Operators and the Petersson Inner Product

Lemma 2.30 (Double Coset Motivation Hecke Operators). We have that

{γ ∈M2(Z) : det γ = n, N | γc} =
⊔

a2b=n

Γ0(N)

(
ab 0
0 a

)
Γ0(N) =

⊔
δ∈∆N

n

Γ0(N) δ

where ∆N
n = {

(
a b
0 d

)
: ad = n, b mod d, (a,N) = 1}. This follows naturally by considering the Smith normal form

and Hermite form of matrices.

Definition 2.31 (Hecke Operators). We define the Hecke operators acting on function f ∈Mk(Γ0(N)) as

(Tnf)(z) = nk/2−1
∑

δ∈∆N
n

f |kδ(z).

Remark. One can think of Hecke operators as an averaging operator.

Lemma 2.32 (Hecke Operators as Indexed Sum). The Hecke operators act on functions f ∈Mk(Γ0(N)) as

(Tnf)(z) = nk−1
∑
ad=n

∑
b mod d

χN
0 (a) d−k f

((
a b
0 d

)
z

)
.

Proof. Trivial.

Lemma 2.33 (Hecke Operators on Fourier Series). If f ∈Mk(Γ0(N)) has Fourier expansion

f(z) =
∑
0≤m

cme
2πimz then (Tnf)(z) =

∑
0≤m

∑
d|(m,n)

χN
0 (d) dk−1 cmn/d2 e2πimz.

Proof. By the previous lemma we have that

(Tnf)(z) = nk−1
∑
ad=n

∑
b mod d

χN
0 (a) d−k

∑
0≤m

cme
2πimaz/de2πimb/d


= nk−1

∑
0≤m

∑
ad=n

χN
0 (a) cm

e2πimaz/d

dk−1

(
1

d

∑
b mod d

e2πimb/d

)
.

Now note that
1

d

∑
b mod d

e2πimb/d = 1 if d | m, and is 0 otherwise.

Thus, noting that a = n/d we now have

(Tnf)(z) = nk−1
∑
0≤m

∑
ad=n

χN
0 (a) cm

e2πimaz/d

dk−1

(
1

d

∑
b mod d

e2πimb/d

)

= nk−1
∑
0≤m

∑
ad=n
d|m

χN
0 (a) cm

e2πimaz/d

dk−1
= nk−1

∑
0≤m

∑
d|(m,n)

χN
0 (n/d) cm

e2πimnz/d2

dk−1
.

Since d | (m,n) we know that d | m and thus there exists b such that bd = m for all d. Using this we have

(Tnf)(z) = nk−1
∑
0≤m

∑
d|(m,n)

χN
0 (n/d) cm

e2πimnz/d2

dk−1
= nk−1

∑
0≤b

∑
d|n

χN
0 (n/d) cbd

e2πibnz/d

dk−1
.

Likewise for d | n we know there exists a such that ad = n for all d. Using this we have

(Tnf)(z) = nk−1
∑
0≤b

∑
d|n

χN
0 (n/d) cbd

e2πibnz/d

dk−1
=
∑
0≤b

∑
a|n

χN
0 (a) ak−1 cbn/a e

2πiabz.
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Now re-indexing with ab = m we have

(Tnf)(z) =
∑
0≤b

∑
a|n

χN
0 (a) ak−1 cbn/a e

2πiabz =
∑
0≤m

∑
a|(m,n)

χN
0 (a) ak−1 cmn/a2 e2πimz

exactly as desired.

Lemma 2.34 (Hecke Operators are Multiplicative). For all (m,n) = 1, we have that Tmn = Tm Tn.

Proof. By the above lemma we know that

(Tmnf)(z) =
∑
0≤a

∑
d|(a,mn)

χN
0 (d) dk−1camn/d2e2πiaz.

Similarly, we have that

(Tnf)(z) =
∑
0≤b

∑
d′|(b,n)

χN
0 (d′) d′k−1cbn/d2e2πibz =

∑
0≤b

c′be
2πibz where c′b =

∑
d′|(b,n)

χN
0 (d′) d′k−1cbn/d′2 .

Thus, applying Tm to this new Fourier expansion gives

(TmTnf)(z) =
∑
0≤a

∑
d|(a,m)

χN
0 (d) dk−1c′am/d2e2πiaz =

∑
0≤a

∑
d|(a,m)

∑
d′|(am/d2,n)

χN
0 (dd′) (dd′)k−1camn/(dd′)2e

2πiaz

Now note that d′ | am/d2, thus d′ | am. However, since (m,n) = 1 and d′ | n, we know that d′ ∤ m; thus, d | a. So
this can be re-indexed with d′ | (a, n) instead.

(TmTnf)(z) =
∑
0≤a

∑
d|(a,m)

∑
d′|(am/d2,n)

χN
0 (dd′) (dd′)k−1camn/(dd′)2e

2πiaz

=
∑
0≤a

∑
d|(a,m)

∑
d′|(a,n)

χN
0 (dd′) (dd′)k−1camn/(dd′)2e

2πiaz

Now since d | a and d′ | n, we have that dd′ | an. Likewise, since d | m and d′ | a, we have that dd′ | am. Now
since (m,n) = 1, we know there exists x and y such that xm + yn = 1. So, we have that dd′ | x(am) + y(an) with
x(am) + y(an) = a(xm+ yn) = a; thus, dd′ | a. Trivially we have that dd′ | mn also. So this can be re-indexed by
sending dd′ 7→ d where d | (a,mn) instead.

(TmTnf)(z) =
∑
0≤a

∑
d|(a,m)

∑
d′|(a,n)

χN
0 (dd′) (dd′)k−1camn/(dd′)2e

2πiaz

=
∑
0≤a

∑
d|(a,mn)

χN
0 (d) dk−1camn/d2e2πiaz = (Tmnf)(z)

as desired.

Corollary 2.35 (Normalized Eigenforms of Hecke Operators Have Multiplicative Fourier Coefficients). If f ∈
Sk(Γ0(N)) has Fourier expansion

f(z) =
∑
1≤m

cme
2πimz

with c1 = 1 and there exists λn such that Tnf = λnf for all n; then, cmn = cmcn for all (m,n) = 1.

Proof. Suppose that f ∈Mk has λn such that Tnf = λnf for all n. Noting that

(Tnf)(z) =
∑
0≤m

∑
d|(m,n)

χN
0 (d) dk−1cmn/d2e2πimz

and matching the m = 1 Fourier coefficients, we have cn = λn for all n. Thus, for (m,n) = 1 we have

cmnf = λmnf = Tmnf = TmTnf = λmλnf = cmcnf

dividing through by f completes the proof.
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Lemma 2.36 (Hecke Operator Composition Identity). We have that

TmTn =
∑

d|(m,n)

χN
0 (d) dk−1 Tmn/d2

for all m and n.

Proof. Suppose that this identity holds for m and n prime powers with the same base. Now let p and q be distinct
primes and note

(pa, qb) = (qb, pc) = (pc, qd) = 1

=⇒ TpaqbTpcqd = TpaTqbTpcTqd = TpaTqbpcTqd = TpaTpcqbTqd = TpaTpcTqbTqd .

Thus,

TpaqbTpcqd = (TpaTpc)(TqbTqd) =

 ∑
d|(pa,pc)

χN
0 (d) dk−1Tpapc/d2

 ∑
d′|(qb,qd)

χN
0 (d′) d′k−1Tqbqd/d′2


=

∑
d|(pa,pc)

∑
d′|(qb,qd)

χN
0 (dd′) (dd′)k−1Tpapc/d2Tqbqd/d′2 .

But now note that (papc/d2, qbqd/d′2) = 1, thus

TpaqbTpcqd =
∑

d|(pa,pc)

∑
d′|(qb,qd)

χN
0 (dd′) (dd′)k−1Tpapc/d2Tqbqd/d′2 =

∑
d|(pa,pc)

∑
d′|(qb,qd)

χN
0 (dd′) (dd′)k−1Tpaqbpcqd/(dd′)2 .

Now we can re-index by sending dd′ 7→ d with d | (paqb, pcqd).

TpaqbTpcqd =
∑

d|(pa,pc)

∑
d′|(qb,qd)

χN
0 (dd′) (dd′)k−1Tpaqbpcqd/(dd′)2 =

∑
d|(paqb,pcqd)

χN
0 (d) dk−1Tpaqbpcqd/d2 .

Inductively, and applying the fundamental theorem of arithmetic, we have that this identity then holds for all pairs
of integers.

Thus,we need to prove this identity holds for prime powers with the same base.

We first prove the base case, TpTpn = Tpn+1 + χN
0 (p) pk−1Tpn−1 . Note that

(Tpnf)(z) =
∑
0≤b

∑
d′|(b,pn)

χN
0 (d) d′k−1cbpn/d′2e2πibz =

∑
0≤b

c′be
2πibz where c′b =

∑
d|(b,pn)

χN
0 (d) dk−1cbpn/d′2 .

Thus, applying Tp to this new Fourier expansion gives

(TpTpnf)(z) =
∑
0≤a

∑
d|(a,p)

χN
0 (d) dk−1c′ap/d2 e2πiaz =

∑
0≤a

∑
d|(a,p)

∑
d′|(ap/d2,pn)

χN
0 (dd′) (dd′)k−1capn+1/(dd′)2 e

2πiaz.

Now note that we get a d = 1 term from every a, and a d = p term from every a which is a multiple of p; thus,

(TpTpnf)(z) =
∑
0≤a

∑
d′|(ap,pn)

χN
0 (d′) d′k−1capn+1/d′2e2πiaz

+
∑
0≤a

∑
d′|(a,pn)

χN
0 (pd′) (pd′)k−1capn/d′2e2πiapz.

Focusing on the first double sum and sending d′ 7→ pd we have∑
0≤a

∑
d′|(ap,pn)

χN
0 (d′) d′k−1capn+1/d′2e2πiaz

= χN
0 (p) pk−1

∑
0≤a

∑
d|(a,pn−1)

χN
0 (d) dk−1capn−1/d2e2πiaz = χN

0 (p) pk−1(Tpn−1f)(z).
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Focusing on the second double sum and sending pa 7→ a and pd′ 7→ d we have∑
0≤a

∑
d|(a,pn)

χN
0 (pd′) (pd′)k−1capn/d′2e2πiapz

=
∑
0≤a

∑
d|(a,pn+1)

χN
0 (d) dk−1capn+1/d2e2πiaz = (Tpn+1f)(z)

Thus TpTpn = Tpn+1 + χN
0 (p) pk−1Tpn−1 as desired.

Now we will proceed via strong induction. We need to show that

Tpm+1Tpn =
∑

d|(pm+1,pn)

χN
0 (d) dk−1Tpm+1pn/d2

assuming it holds for all lower cases. WLOG, suppose that m ≤ n. Now, note that

TpTpmTpn = Tp
∑

d|(pm,pn)

χN
0 (d) dk−1Tpmpn/d2 =

∑
d|(pm,pn)

χN
0 (d) dk−1TpTpmpn/d2

=
∑

d|(pm,pn)

χN
0 (d) dk−1(Tpm+1pn/d2 + χN

0 (p) pk−1Tpm−1pn/d2)

=
∑

d|(pm,pn)

χN
0 (d) dk−1Tpm+1pn/d2 +

∑
d|(pm,pn)

χN
0 (pd) (pd)k−1Tpm−1pn/d2 .

Extracting the d = 1 term from the first sum we have

TpTpmTpn =
∑

d|(pm,pn)

χN
0 (d) dk−1Tpm+1pn/d2 +

∑
d|(pm,pn)

χN
0 (pd) (pd)k−1Tpm−1pn/d2

= Tpm+1pn + χN
0 (p) pk−1

∑
d|(pm−1,pn)

χN
0 (d) dk−1Tpm−1pn/d2 +

∑
d|(pm,pn)

χN
0 (pd) (pd)k−1Tpm−1pn/d2

= Tpm+1pn + χN
0 (p) pk−1Tpm−1Tpn +

∑
d|(pm,pn)

χN
0 (pd) (pd)k−1Tpm−1pn/d2 .

Thus,

(TpTpm − χN
0 (p) pk−1Tpm−1)Tpn = Tpm+1pn +

∑
d|(pm,pn)

χN
0 (pd) (pd)k−1Tpm−1pn/d2

=⇒ Tpm+1Tpn =
∑

d|(pm+1,pn)

χN
0 (d) dk−1Tpm+1pn/d2 .

Thus the proof is complete.

Corollary 2.37 (Hecke Operators are Commutative). For all m and n we have that TmTn = TnTm.

Proof. Since the RHS in the previous identity is the same if m and n swap, commutativity immediately follows.

Lemma 2.38 (Hecke Operators PreserveMk(Γ0(N)) and Sk(Γ0(N))). We have that Tn :Mk(Γ0(N)) →Mk(Γ0(N))
and Tn : Sk(Γ0(N)) → Sk(Γ0(N)).

Proof. For γ ∈ Γ0(N) note that

(Tnf)|kγ = nk/2−1
∑

δ∈∆N
n

f |kδ|kγ = nk/2−1
∑

δ∈∆N
n

f |kδγ.

Now note that ∆N
n = Γ0(N)∆N

n = ∆N
n Γ0(N). So there exists γ′ ∈ Γ0(N) and δ′ ∈ ∆N

n such that δγ = γ′δ′ and
indeed this map δ 7→ δ′ forms a bijection across elements of ∆N

n . Thus,

(Tnf)|γ = nk/2−1
∑

δ∈∆N
n

f |kδγ = nk/2−1
∑

δ′∈∆N
n

f |kγ′δ′ = nk/2−1
∑

δ′∈∆N
n

f |kγ′|kδ′.
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So by the modularity of f we have that

(Tnf)|kγ = nk/2−1
∑

δ′∈∆N
n

f |kγ′|kδ′ = nk/2−1
∑

δ′∈∆N
n

f |kδ′ = Tnf.

Thus Tnf is modular and so Tn :Mk(Γ0(N)) →Mk(Γ0(N)).
Now if f ∈ Sk(Γ0(N)) then if we let

(Tnf)(z) =
∑
0≤m

∑
d|(m,n)

χN
0 (d) dk−1cmn/d2e2πimz =

∑
0≤m

c′me
2πimz

then we have that
c′0 =

∑
d|(0,n)

χN
0 (d) dk−1c0.

But since f ∈ Sk we know that c0 = 0; thus, c′0 = 0 and we have that f ∈ Sk(Γ0(N)) also.

Corollary 2.39 (τ is Multiplicative). For all (m,n) = 1 we have that τ(mn) = τ(m) τ(n).

Proof. Since S12 = ∆ · C and Tn : S12 → S12, we know there exists λn such that Tn∆ = λn∆ for all n. Thus ∆ is
an eigenform of the Hecke operators and we have that τ(mn) = τ(m) τ(n) for all (m,n) = 1.

Definition 2.40 (Petersson Inner Product). For modular forms f, g ∈ Mk(Γ0(N)) we define the Petersson inner
product

⟨f, g⟩ =
∫
Γ0(N)/H

f(z) g(z) yk−2 dx dy

where Γ0(N)/H is the fundamental domain of H under the action of Γ0(N).

Lemma 2.41 (Poincare Series and the Petersson Inner Product). If f ∈Mk(Γ0(N)) we have that

⟨f, Pm,k⟩ =
Γ(k − 1)

(4πm)k−1
f̂(m)

where f̂ is the Fourier transform of f .

Proof. Note that

⟨f, Pm,k⟩ =
∫
Γ0(N)/H

ykf(z)
∑

γ∈Γ∞/Γ0(N)

e(mz)|kγ
dx dy

y2

=
∑

γ∈Γ∞/Γ0(N)

∫
Γ0(N)/H

ykf(z)j(γ, z)−k e(mγz)
dx dy

y2
.

Now since our measure is Γ0(N) invariant we make a substitution on the integral

⟨f, Pm,k⟩ =
∑

γ∈Γ∞/Γ0(N)

∫
γ(Γ0(N)/H)

Im(γ−1z)kf(γ−1z) j(γ, γ−1z)−k e(mz)
dx dy

y2
.

Now doing some quick calculations we have that

Im(γ−1z)k =
yk

|j(γ−1, z)|2k
and j(γ, γ−1z)−k = j(γ−1, z)k;

thus, using the modularity of f we have that

⟨f, Pm,k⟩ =
∑

γ∈Γ∞/Γ0(N)

∫
γ(Γ0(N)/H)

yk

|j(γ−1, z)|2k
j(γ−1, z)kf(z) j(γ−1, z)k e(mz)

dx dy

y2

=
∑

γ∈Γ∞/Γ0(N)

∫
γ(Γ0(N)/H)

ykf(z)e(mz)
dx dy

y2
=

∫
Γ∞/H

ykf(z) e(−mx) e(imy) dx dy
y2

.
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But now note that the action of Γ∞ on H is translation by some integer amount in the real component. Thus,

⟨f, Pm,k⟩ =
∫ ∞

0

yk e(imy)

∫ 1

0

f(z) e(−mx) dx dy
y2

.

Now we recall the Fourier expansion of f ,

⟨f, Pm,k⟩ =
∑
0≤n

an

∫ ∞

0

yke(imy + iny)

∫ 1

0

e(nx−mx)
dx dy

y2

=
∑
0≤n

anδmn

∫ ∞

0

yk e(imy + iny)
dy

y2
= am

∫ ∞

0

yk−2 e−4πmy dy =
Γ(k − 1)

(4πm)k−1
f̂(m),

exactly as desired.

Theorem 2.42 (Poincare Series Span the Space Sk(Γ0(N))). We have that Sk(Γ0(N)) = Span{Pm,k : 1 ≤ m}.

Proof. Let S′
k(Γ0(N)) = Span{Pm,k : 1 ≤ m}. Now if we suppose that f is in the orthogonal complement of

S′
k(Γ0(N)), then ⟨f, Pm,k⟩ = 0 for all 1 ≤ m. Thus, f̂(m) = 0 for all 1 ≤ m by the above. Thus f ≡ 0, and
Sk(Γ0(N)) = S′

k(Γ0(N)) as desired.

Lemma 2.43 (Hecke Operator and Poincare Series Symmetry Lemma I). We have that

χN
0 (m)mk−1TnPm,k = χN

0 (n)nk−1TmPn,k.

Proof. Note that

χN
0 (m)mk−1(TnPm,k)(z) = χN

0 (m) (mn)k−1
∑
ad=n

∑
b mod d

∑
γ∈Γ∞/Γ0(N)

χN
0 (a) d−ke

(
m

(
a b
0 d

)
z

) ∣∣∣∣∣
k

γ

= χN
0 (m) (mn)k−1

∑
ad=n

∑
b mod d

∑
γ∈Γ∞/Γ0(N)

χN
0 (a) d−k j(γ, z)−k e

(
m

(
a b
0 d

)
γz

)

= (mn)k−1
∑
ad=n

∑
γ∈Γ∞/Γ0(N)

χN
0 (ma) e(maγz/d)

dk−1 j(γ, z)k

(
1

d

∑
b mod d

e(mb/d)

)
.

Now note that
1

d

∑
b mod d

e(mb/d) if d | m, and is 0 otherwise.

Thus, noting that a = n/d we now have

χN
0 (m)mk−1(TnPm,k)(z) = (mn)k−1

∑
ad=n

∑
γ∈Γ∞/Γ0(N)

χN
0 (ma) e(maγz/d)

dk−1 j(γ, z)k

(
1

d

∑
b mod d

e(mb/d)

)

= (mn)k−1
∑
ad=n
d|m

∑
γ∈Γ∞/Γ0(N)

χN
0 (ma) e(maγz/d)

dk−1 j(γ, z)k

= (mn)k−1
∑

d|(m,n)

∑
γ∈Γ∞/Γ0(N)

χN
0 (mn/d) e(mnγz/d2)

dk−1 j(γ, z)k
.

This expression is symmetric under (m,n) 7→ (n,m); so we have that

χN
0 (m)mk−1 TnPm,k = χN

0 (n)nk−1 TmPn,k

as desired.

Lemma 2.44 (Hecke Operator and Poincare Series Symmetry Lemma II). For f ∈Mk(Γ0(N)) we have that

mk−1⟨Tnf, Pm,k⟩ = nk−1⟨Tmf, Pn,k⟩.
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Proof. Note that

Tmf =
∑
0≤a

∑
d|(a,m)

χN
0 (d) dk−1cam/d2 e2πiaz and Tnf =

∑
0≤a

∑
d|(a,n)

χN
0 (d) dk−1can/d2 e2πiaz.

Thus we immediately have that (̂Tmf)(n) = (̂Tnf)(m). Thus from our previous lemma,

⟨Tmf, Pn,k⟩
(4πn)k−1

Γ(k − 1)
= (̂Tmf)(n) = (̂Tnf)(m) = ⟨Tnf, Pm,k⟩

(4πm)k−1

Γ(k − 1)
.

Removing the scalar factors from both sides completes our proof.

Theorem 2.45 (Hecke Operators are Self-Adjoint w.r.t Petersson Inner Product on Sk). For all n and f, g ∈ Sk we
have that ⟨Tnf, g⟩ = ⟨f, Tng⟩.

Proof. Since f, g ∈ Sk we know that N = 1 and so

mk−1TnPm,k = χN
0 (m)mk−1TnPm,k = χN

0 (n)nk−1TmPn,k = nk−1TmPn,k.

Thus we have that

⟨TnPr,k, Ps,k⟩ =
(n
s

)k−1

⟨TsPr,k, Pn,k⟩ =
(n
r

)k−1

⟨TrPs,k, Pn,k⟩ = ⟨TnPs,k, Pr,k⟩ = ⟨Pr,k, TnPs,k⟩.

But now since the Fourier coefficients of Pr,k and Ps,k are real, we know that

⟨TnPr,k, Ps,k⟩ = ⟨Pr,k, TnPs,k⟩ = ⟨Pr,k, TnPs,k⟩.

Thus, for all n, Tn is self adjoint w.r.t the Petersson inner product.

Lemma 2.46 (Spectral Theorem). If T, T ′ : V → V are commuting complex valued linear operations which satisfy
⟨Tv, v′⟩ = ⟨v, Tv′⟩ and ⟨T ′v, v′⟩ = ⟨v, T ′v′⟩ for all v, v′ ∈ V ; then there exists a simultaneous eigenbasis of T and T ′.

Proof. Since T has a characteristic polynomial, we know there exists at least one eigenvector v ̸= 0 such that Tv = λv
with λ ̸= 0. Now if v ̸= 0 is an arbitrary eigenvector with associated eigenvalue λ ̸= 0, then

λ⟨v, v⟩ = ⟨Tv, v⟩ = ⟨v, Tv⟩ = λ⟨v, v⟩ =⇒ 0 = (λ− λ)⟨v, v⟩.

Since v ̸= 0, we know that ⟨v, v⟩ ̸= 0; thus, λ ∈ R. Now if v, v′ ̸= 0 are arbitrary eigenvectors with associated
eigenvalues 0 ̸= λ ̸= λ′ ̸= 0, then

λ⟨v, v′⟩ = ⟨Tv, v′⟩ = ⟨v, Tv′⟩ = λ′⟨v, v′⟩ =⇒ 0 = (λ− λ′)⟨v, v′⟩.

Since λ′ ∈ R and λ ̸= λ′ we know that ⟨v, v′⟩ = 0. Thus, we have that

V =
⊕
λ∈R

CEλ

where Eλ = {v ∈ V : Tv = λv}. Now note that

T (T ′Eλ) = T ′TEλ = T ′λEλ = λ(T ′Eλ) =⇒ T ′Eλ = λ′Eλ

for some λ′ ∈ C. Thus you can find a simultaineous eigenbasis of T and T ′.

Corollary 2.47 (There Exists a Basis of Sk which are Eigenforms of Hecke Operators). There exists a basis of Sk

such that every element is an Eigenform of all Hecke operators Tn.

Proof. Applying the spectral theorem immediately gives the desired result.

Theorem 2.48 (Slash Operator is an Isometry of Sk(Γ0(N)) w.r.t Petersson Inner Product). We have that ⟨f |kγ, g|kγ⟩ =
⟨f, g⟩ for all γ ∈ GL2(R) and f, g ∈ Sk(Γ0(N)).

48



Proof. For every γ ∈ GL2(R) there exists γ′ ∈ SL2(R) such that f |kγ = f |kγ′. Thus it is sufficient to prove the
identity for SL2(R). Note that

⟨f |kγ, g|kγ⟩ =
∫
Γ0(N)/H

yk f |kγ(z) g|kγ(z)
dx dy

y2
=

∫
Γ0(N)/H

yk

j(γ, z)2k
f(γz) g(γz)

dx dy

y2
.

Now since our measure is GL+
2 (R) invariant we make a substitution on the integral

⟨f |kγ, g|kγ⟩ =
∫
γ(Γ0(N)/H)

Im(γ−1z)k

j(γ, γ−1z)2k
f(z) g(z)

dx dy

y2
.

Now doing some quick calculations we have that

Im(γ−1z)k =
yk

j(γ−1, z)2k
and j(γ, γ−1z)−2k = j(γ−1, z)2k;

thus we have that

⟨f |kγ, g|kγ⟩ =
∫
γ(Γ0(N)/H)

yk f(z) g(z)
dx dy

y2
= ⟨f, g⟩

since our integral is independent of our choice of fundamental domain.

Theorem 2.49 (Hecke Operators are Self-Adjoint w.r.t Petersson Inner Product on Sk(Γ0(N))). For all n and
f, g ∈ Sk(Γ0(N)) we have that ⟨Tnf, g⟩ = χN

0 (n) ⟨f, Tng⟩.

Proof. For ad = n and b mod d let δ =
(
a b
0 d

)
and δ′ =

(
d −b
0 a

)
. Now since the slash operator is an isometry we have

⟨f |kδ, g⟩ = ⟨f |kδ|kδ′, g|kδ′⟩ = ⟨f |k( n 0
0 n ), g|kδ

′⟩ = ⟨f, g|kδ′⟩.

Now note that
Tnf = nk/2−1

∑
δ∈∆N

n

f |kδ = nk/2−1
∑
δ∈∆1

n

χN
0 (a) f |kδ.

Thus it follows that

⟨Tnf, g⟩ = nk/2−1
∑
δ∈∆1

n

⟨χN
0 (a) f |kδ, g⟩ = nk/2−1

∑
δ∈∆1

n

χN
0 (a)⟨f |kδ, g⟩

= χN
0 (n)nk/2−1

∑
δ∈∆1

n

χN
0 (d)⟨f, g|kδ′⟩ = χN

0 (n)nk/2−1
∑
δ∈∆1

n

⟨f, χN
0 (d) g|kδ′⟩.

Let T = ( 1 1
0 1 ) ∈ Γ0(N). Thus, by modularity g = g|kT . So since δ 7→ Tδ′ is a bijection on ∆1

n we have that

⟨Tnf, g⟩ = ⟨Tnf, g|kT ⟩ = χN
0 (n)nk/2−1

∑
δ∈∆1

n

⟨f, χN
0 (d) g|kT |kδ′⟩

= χN
0 (n)nk/2−1

∑
δ∈∆1

n

⟨f, χN
0 (d) g|kTδ′⟩ = χN

0 (n)nk/2−1
∑

δ′∈∆1
n

⟨f, χN
0 (d) g|kδ′⟩ = χN

0 (n) ⟨f, Tng⟩.

Corollary 2.50 (There Exists a Basis of Sk(Γ0(N)) which are Eigenforms of Hecke Operators). There exists a basis
of Sk(Γ0(N)) such that every element is an Eigenform of all Hecke operators Tn with (n,N) = 1.

Proof. Note that since
⟨Tnf, g⟩ = χN

0 (n) ⟨f, Tng⟩

we know that Tn is self-adjoint w.r.t. the Petersson inner product for all (n,N) = 1. Applying the spectral theorem
immediately gives the desired result.

49



2.5 Atkin-Lehner Theory

Lemma 2.51 (Injection of Cusp Forms to Higher Level I). If f ∈ Sk(Γ0(M)) and M | N , then f ∈ Sk(Γ0(N)).

Proof. Note that Γ0(N) is a subgroup of Γ0(M) when M | N . Thus, f ∈ Sk(Γ0(M)) =⇒ f ∈ Sk(Γ0(N)).

Lemma 2.52 (Injection of Cusp Forms to Higher Level II). If f(z) ∈ Sk(Γ0(M)) then f(rz) ∈ Sk(Γ0(rM)).

Proof. Let g(z) = f(rz) and let γ =
(

a b
crM d

)
∈ Γ0(rM). Then we have that

g(γz) = f(rγz) = f

(
r ·
(

az + b

crMz + d

))
= f

(
a(rz) + rb

cM(rz) + d

)
= f(γ′(rz))

where γ′ =
(

a rb
cM d

)
. Note that det γ′ = det γ = 1 and that cN ≡ 0 mod N , thus γ′ ∈ Γ0(N). So by the modularity

of f on Γ0(N) we have that

g(γz) = f(γ′(rz)) = j(γ′, rz)kf(rz) = (crMz + d)kf(rz) = j(γ, z)kg(z).

Thus g is modular on Γ0(rM) as desired.

Corollary 2.53 (Injection of Cusp Forms to Higher Level III). If f(z) ∈ Sk(Γ0(M)), M | N , and r | (N/M); then
f(rz) ∈ Sk(Γ0(N)).

Proof. Simple consequence of the previous two lemmas.

Definition 2.54 (Space of Oldforms). We define the space of level N oldforms, denoted Sold
k (Γ0(N)) as the cusp

forms ”coming from those of lower level.” More precisely,

Sold
k (Γ0(N)) = Span


⋃
M |N
M ̸=N

⋃
r|(N/M)

{f(rz) : f(z) ∈ Sk(Γ0(M))}

 .

Definition 2.55 (Space of Newforms). The space of level N newforms, denoted Snew
k (Γ0(N)), is the orthogonal

complement of the space of oldforms with respect to the Petersson inner product.

Lemma 2.56 (Hecke Operators Preserve Sold
k (Γ0(N)) and Snew

k (Γ0(N))). We have that Tn : Sold
k (Γ0(N)) →

Sold
k (Γ0(N)) and Tn : Snew

k (Γ0(N)) → Snew
k (Γ0(N)).

Proof. Note that if f ∈ Sold
k (Γ0(N)) then there exists an M | N with M ̸= N such that f ∈ Sk(Γ0(M)). Then we

know Tnf ∈ Sk(Γ0(M)) since Hecke operators preserve Sk(Γ0(M)). But then we know that Tnf ∈ Sold
k (Γ0(N)) by

the definition of the space of oldforms.
Now if f ∈ Snew

k (Γ0(N)) then we know that Tnf ∈ Snew
k (Γ0(N)) since Tn preserves the space of oldforms and the

space of newforms is the orthogonal complement of the space of oldforms.

Definition 2.57 (Newforms). A level N newform is an f ∈ Snew
k (Γ0(N)) such that f is a normalized simultaneous

eigenform of all Hecke operators Tn with (n,N) = 1.

Theorem 2.58 (Multiplicity-One Theorem). If f and g are newforms with the same Hecke eigenvalues λn for all
(n,N) = 1, then f = g.

Proof. If f is a newform then we know it is a normalized Hecke eigenform. Furthermore, if

f(z) =
∑
1≤m

cme
2πimz and g(z) =

∑
1≤m

c′me
2πimz

then note that, for (n,N) = 1 one has

λnf = Tnf =
∑
0≤m

∑
d|(m,n)

χN
0 (d) dk−1cmn/d2e2πimz

λng = Tng =
∑
0≤m

∑
d|(m,n)

χN
0 (d) dk−1cmn/d2e2πimz.
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Matching the m = 1 coefficients we have that λn = λnc1 = cn and λn = λnc
′
1 = c′n since c1 = 1 and c′1 = 1 comes

from f and g being normalized. Thus, cn = λn = c′n for (n,N) = 1. Thus we have that

f − g =
∑

(m,N)̸=1

(cm − c′m) e2πimz ∈ Sold
k (Γ0(N)).

But note that we have expressed an oldform as a linear combination of newforms, and the space of oldforms is
orthogonal to the space of newforms; so we know that f − g = 0.

Corollary 2.59 (Newforms are Eigenforms of all Hecke Operators). A level N newform f is a normalized simulta-
neous eigenform of all Hecke operators Tn.

Proof. Suppose Tnf = λnf for all (n,N) = 1, and note that

TnTmf = TmTnf = Tmλnf = λnTmf.

Thus, Tmf is a Hecke eigenform of all (n,N) = 1. So we know there exists λm such that λmg = Tmf where g is a
newform. Then we have that

λm Tng = TnTmf = λnTmf = λmλng =⇒ Tng = λng.

But since f and g are newforms with the same eigenvalues at (n,N) = 1 we know that f = g by the multiplicity one
theorem. Thus,

Tmf = λmg = λmf.

So f is a simultaneous eigenform of all Hecke operators Tn.

Corollary 2.60 (There Exists a Basis of Snew
k (Γ0(N)) which are Eigenforms of Hecke Operators). There exists a

basis of Snew
k (Γ0(N)) such that every element is an Eigenform of all Hecke operators Tn.

Proof. Note that since
⟨Tnf, g⟩ = χN

0 (n)⟨f, Tng⟩

we know that Tn is self-adjoint w.r.t the Petersson inner product for all (n,N) = 1. Applying the spectral theorem
and renomralizing tells us that we can construct a basis for Snew

k (Γ0(N)) with all of the elements being newforms.
By the above we know that newforms are Eigenforms of all Hecke operators.

Lemma 2.61 (The Fricke Involution Preserve Mk(Γ0(N)) and Sk(Γ0(N))). If we let Wf = f |kω where ω =(
0 −1/

√
N

N 0

)
, then we have that W :Mk(Γ0(N)) →Mk(Γ0(N)) and W : Sk(Γ0(N)) → Sk(Γ0(N)).

Proof. First note that if γ =
(

a b
cN d

)
∈ Γ0(N) then γ′ =

(
d −c

−bN a

)
∈ Γ0(N) and we have that

ωγ =

(
0 −1/

√
N√

N 0

)(
a b
cN d

)
=

(
−c

√
N −d/

√
N

a
√
N b

√
N

)
=

(
d −c

−bN a

)(
0 −1/

√
N√

N 0

)
= γ′ω.

Thus if f ∈Mk(Γ0(N)) then, by modularity we have that

(Wf)|kγ = f |kω|kγ = f |kωγ = f |kγ′ω = f |kγ′|kω = f |kω =Wf.

Thus Wf ∈Mk(Γ0(N)) also.

Lemma 2.62 (The Fricke Involution Commutes with Hecke Operators). We have that WTn = TnW .

Proof. Note that

WTnf = nk/2−1
∑

δ∈∆N
n

f |kδ|kω = nk/2−1
∑

δ∈∆N
n

f |kδω.

Now for δ ∈ ∆N
n there exists γ′ ∈ Γ0(N) and δ′ ∈ ∆N

n such that δω = ωγ′δ′ and indeed this map δ 7→ δ′ forms a
bijection across elements of ∆N

n . Thus,

WTnf = nk/2−1
∑

δ∈∆N
n

f |kδω = nk/2−1
∑

δ′∈∆N
n

f |kωγ′δ′ = nk/2−1
∑

δ′∈∆N
n

f |kω|kγ′|kδ′ = nk/2−1
∑

δ′∈∆N
n

(Wf)|kγ′|kδ′.
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Now since Wf :Mk(Γ0(N)) →Mk(Γ0(N)) we know that Wf is modular, thus

WTnf = nk/2−1
∑

δ′∈∆N
n

(Wf)|kγ′|kδ′ = nk/2−1
∑

δ′∈∆N
n

(Wf)|kδ′ = TnWf

exactly as desired.

Lemma 2.63 (Hecke Eigenforms are Eigenforms of the Fricke Involution). If f is a Hecke eigenform then f is an
eigenform of the Fricke involution. Specifically, Wf = ±f .

Proof. Now note that if f is a Hecke eigenform, then g = f/c1 is a newform. Suppose Tng = λng for all n. Now note

TnWg =WTng =Wλng = λnWg.

Thus Wg is a Hecke eigenform, and we know that Wg = wh where h is a newform. Thus

wTnh = TnWg = λnWg = wλnh =⇒ Tnh = λnh.

But since g and h are newforms with the same Hecke eigenvalues, by the multiplicity one theorem we know that
g = h. Thus,

Wf = c1Wg = c1wh = c1wg = wf

as desired. Now note that since

ω2 =

(
0 −1/

√
N√

N 0

)2

=

(
−1 0
0 −1

)
∈ Γ0(N),

by modularity we have that

f = f |kω2 = f |kω|kω =WWf = wWf = wwf = w2f.

Thus w2 = 1 and so w = ±1.

Theorem 2.64 (Functional Equations for L-Functions Associated with Hecke Eigenforms). For f ∈ Sk where f is
a Hecke eigenform, we can extend L(f, s) to an entire function, and if

Λ(f, s) = Ns/2M(f(it))(s) = Ns/2 (2π)−s Γ(s)L(f, s)

then we have that
Λ(f, s) = ±ikΛ(f, k − s).

Proof. Recall that for all σ > 0, Γ(s) is defined as

Γ(s) =

∫ ∞

0

e−tts−1 dt.

Now if we do the substitution t = 2πnu, then after some manipulation we have that

(2πn)−s Γ(s) =

∫ ∞

0

e−2πntts−1 dt.

Now if we take the sum over all n ≥ 1 with the coefficients cn.

(2π)−s L(f, s) Γ(s) =
∑
1≤n

cn (2πn)
−s Γ(s) =

∑
1≤n

cn

∫ ∞

0

e−2πntts−1 dt.

Now note that, using Hecke’s bound and the substitution u = 2πnt we have∑
1≤n

∫ ∞

0

∣∣cn e−2πntts−1
∣∣ dt≪∑

1≤n

nk/2
∫ ∞

0

e−2πnttσ−1 dt

= (2π)−σ
∑
1≤n

n−(σ−k/2)

∫ ∞

0

e−uuσ−1 du =
ζ(σ − k/2) Γ(σ)

(2π)σ
.

52



For σ > 1 + k/2 we know this converges. So by Fubini-Tonelli, when σ > 1 + k/2, we can interchange the sum and
the integral as needed.

(2π)−s L(f, s) Γ(s) =
∑
1≤n

cn

∫ ∞

0

e−2πntts−1 dt =

∫ ∞

0

∑
1≤n

cne
−2πntts−1 dt =

∫ ∞

0

f(it) ts−1 dt = M(f(it))(s).

Now note that

(2π)−s L(f, s) Γ(s) =

∫ ∞

0

f(it) ts−1 dt =

∫ 1/
√
N

0

f(it) ts−1 dt+

∫ ∞

1/
√
N

f(it) ts−1 dt.

Now using the substitution t = 1/(Nu) on the first integral we have∫ 1/
√
N

0

f(it) ts−1 dt = −N−s

∫ 1/
√
N

∞
f

(
− 1

Niu

)
u−s−1 du

= Nk/2−sik
∫ ∞

1/
√
N

(Wf)(iu)uk−s−1 du = ±Nk/2−sik
∫ ∞

1/
√
N

f(iu)uk−s−1 du.

So we have that

(2π)−s L(f, s) Γ(s) = ±Nk/2−sik
∫ ∞

1/
√
N

f(it) tk−s−1 dt+

∫ ∞

1/
√
N

f(it) ts−1 dt.

Note that this integral is entire since f(it) has exponential decay as t→ ∞ because f is a cusp form. Thus, we can
extend L(f, s) to an entire function. Returning to our line of thought, by replacing s with k − s and multiplying
through by ±Nk/2−sik we have

±Nk/2−sik (2π)−(k−s) L(f, k − s) Γ(k − s) = i2k
∫ ∞

1/
√
N

f(it) ts−1 dt±Nk/2−sik
∫ ∞

1/
√
N

f(it) tk−s−1 dt.

We know that k must be even since f is a cusp form, thus i2k = 1. So we have that

Λ(f, s) = Ns/2 (2π)−s L(f, s) Γ(s) = ±ikN (k−s)/2(2π)−(k−s) L(f, k − s) Γ(k − s) = ±ikΛ(f, k − s)

as desired.

Theorem 2.65 (Euler Product Expansion of L-Functions Associated with Newforms). If f ∈ Snew
k (Γ0(N)) is a

newform, then we have that

f(z) =
∑
1≤m

cme
2πimz =⇒ L(f, s) =

∏
p

(
1− cp

ps
+ χN

0 (p)
pk−1

p2s

)−1

.

Proof. Since f is a newform we know that f is a normalized simultaneous eigenform of all the Hecke operators Tn.
Thus we know that the Fourier coefficients are multiplicative, so we have that

L(f, s) =
∑
1≤n

cn
ns

=
∏
p

∑
0≤m

cpm

pms
=
∏
p

Sp where Sp = 1 +
∑
1≤m

cpm

pms
.

Now note that
λnf = Tnf =

∑
0≤m

∑
d|(m,n)

χN
0 (d) dk−1cmn/d2e2πimz.

Matching the m = 1 term we have that λnc1 = cn, and since c1 = 1 we have that λn = cn. Thus cnf = λnf = Tnf
for all n. Note that it then follows that

cpcpmf = TpTpmf =
∑

d|(p,pm)

χN
0 (d) dk−1Tpm+1/d2f = Tpm+1f + χN

0 (p) pk−1Tpm−1f = cpm+1f + χN
0 (p) pk−1cpm−1f.

Diving through by f we have that cpcpm = cpm+1 + χN
0 (p) pk−1cpm−1 . So we have that

cpSp

ps
=
cp
ps

+
∑
1≤m

cpcpm

pspms
=
cp
ps

+
∑
1≤m

cpm+1 + χN
0 (p) pk−1cpm−1

p(m+1)s
=
cp
ps

+
∑
1≤m

cpm+1

p(m+1)s
+
χN
0 (p) pk−1

p2s

∑
1≤m

cpm−1

p(m−1)s
.
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But now note that

cpSp

ps
=

 cp
ps

+
∑
1≤m

cpm+1

p(m+1)s

+
χN
0 (p) pk−1

p2s

∑
1≤m

cpm−1

p(m−1)s
= (Sp − 1) +

χN
0 (p) pk−1 Sp

p2s
.

Rearranging we have that

Sp =

(
1− cp

ps
+ χN

0 (p)
pk−1

p2s

)−1

=⇒ L(f, s) =
∏
p

(
1− cp

ps
+ χN

0 (p)
pk−1

p2s

)−1

as desired.
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