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1 Analytic Number Theory

1.1 Possion Summation and Mellin Transform

Definition 1.1 (Fourier Transform). Let f : R — C be integrable. We define the Fourier transform of f as

fo) = [ rwye=rar

Lemma 1.2 (Common Fourier Transforms). We have the following common Fourier transforms

f(t) f(s)

g(n + t) eQTrins Q(S)

g(s/n)

Note that here, convolution is given by
(gxh)(t) = / g(s) h(t — s) ds.

Remark. In some sense, convolution of Fourier transforms is an additive rule. Whereas with Mellin transforms, it
it is a multiplicative rule.

Definition 1.3 (Schwartz Function). A function f € C(R) is Schwartz if for all m and n we have

s

T | < || " as x — Foo0.
T

Theorem 1.4 (Poisson Summation). Let f: R — C be integrable and Schwartz. It follows that
> fm)y=>" fn).
neZ nez

Proof. Let us define
Fz)=) f(z+n).

ne”Z

Note that this function is 1-periodic since it is a sum over Z. We take its Fourier series expansion

1
F(I’) = Z a77L627rima: Wlth Ay = /(; F(I) 6*27Timz dl'

mEZ

Now note that

1 1
A, = /o Z flz+n)e ™M 4y = Z/o f(x+mn)e2™mT dy:

ne”z nez



here we can interchange the integration and summation since (0, 1) is finite w.r.t Lebesgue measure. Note that for
all m, n € Z we have e~ 2" = 1. So it follows by translation invariance of Lesbegue measure

1 1
Q= Z/O f(i[,’ + TL) 6727rim:r do = Z/O f(lC + n) 6727TiM(w+n) d(iL’ + TL)

newZ neZ

Now since f is Schwarz, we have absolute convergence; thus,

1 ~
a, = ZA f(CL' + n) e—27rim(ac+n) d(x + n) — /Rf(x) e—27rim:L' dr = f(m)

nez

Thus we have

Fa) = 3 fm)emme

meEZ

and specializing © = 0 completes the proof. O

Definition 1.5 (Mellin Transform). Let f : R — C be integrable. We define the Mellin transform of f as
M) = [ pe) an
0

Additionally, we define the inverse Mellin transform as

1 c+100
—1 _ —s
MN0 =5 [ s
independent of c € R.

Theorem 1.6 (Mellin Inversion Theorem). If f is analytic in the strip a < o < b and tends to zero uniformly as
Jm(s) — +oo, then for

c+ioco
9= M) = - / £9 f(s) ds

B 2mi c—100
we have that

[ = (Mg)(s) = / T g

Lemma 1.7 (Common Mellin Transforms). We have the following common Fourier transforms

) (M)
t" g(t) (Mg)(s +n)
9(1/t) (Mg)(=s)
(g h)() (Mo)(s) - (M)(5)
o010 | 5 [ o) s -
r(s)
§(t —n) nt=1

Note that here, convolution is given by



1.2 Dirichlet Characters

Definition 1.8 (Dirichlet Characters). Let x : Z — C be a Dirichlet character with associated modulus q satisfying

x(ab) = x(a) x(b)  and  x(a) #0<=(a,q)=1 and  x(a+q)=x(a)
for all a and b.

Definition 1.9 (Primitive Dirichlet Characters). We say that x has a quasiperiod d if x(m) = x(n) for all m and
n coprime to q such that m =n mod d. The smallest quasiperiod of x is its conductor. If a character’s conductor
equals its modulus, it is primitive.

Lemma 1.10 (Orthogonality of Dirichlet Characters I). For a character x with modulo q, we have that

q—1

— )= 49@ X=xo
mz::OX( )_{0 X # Xo-

Proof. The proof of the first case is trivial: if x = xo then there are ¢(¢) summands which are 1 and all other
summands are 0. In the other case, there exists some a € (Z/qZ)* such that x(a) # 1. Noting that m — am is a
bijective map on Z/qZ we have that

q—1 q—1 q—1 q—1
> x(m) =Y x(am) =x(a) > x(m) = (x(a) =1) > x(m) =0.
m=0 m=0 m=0 m=0
Since x(a) — 1 # 0, it must be that our sum over m is exactly 0. O

Lemma 1.11 (Orthogonality of Dirichlet Characters IT). As a sum over characters with modulo q, we have that
o(q) a=1modgq
3 wla) = ¢ A7
N 0 a % 1 mod q.

Proof. The proof of the first case is trivial, since the group of characters with modulo ¢ is isomorphic to (Z/qZ)*,
we know there are ¢(q) terms of the form x(1) = 1. In the other case, there exists some x’ such that x’'(a) # 1.
Noting that x — xx’ is a bijective map on the group of characters with modulo ¢ we have that

D x(a) => xx'(@) =x(a)Y_x(a) = (X'(a)=1))_ x(a)=0.

Since x’(a) — 1 # 0, it must be that the sum over x is exactly 0. O

Definition 1.12 (Gauss Sums). For a character x with modulo q (usually we only care about the primitive ones)
we define the Gauss sum of frequency n € Z, 7,(x) as

1

]00 = 3 xlm)#

g—
m=0
For notation sake, we define the basic Gauss sum as 7(x) = 11(x).

Lemma 1.13. If x is a primitive character with modulo q and (n,q) = 1, then we have that X(n) 7(x) = Tn(Xx)

Proof. Note that m — mn is a bijective map in Z/qZ. So we have that

qg—1 g—1 g—1
X(n) 700 = X(n) 3 x(rm) 71 = X(n) 3 x(mn) 27T = 37y (gm) 2TV = 7, ()
m=0 m=0 m=0
since X(n) x(n) = 1. O

Lemma 1.14. If x is a primitive character with modulo q then 7(x)7(X) = x(—1) q.



Proof. Note that

q—1 qg—1
e27r7lm/ Tm 27Tim/q
m=0 m=0
qg—1 g—1 qg—1 g—1
_ X(”) 627rzmn/q e271'zm/q _ Z X Z 627mm n+1)/q
m=0n=0 n=0 m=0
Now by orthogonality relations, we know that the inner sum vanishes if n Z —1 mod ¢ and equals ¢ if n = —1 mod ¢
Thus, the result follows as everything but the m = ¢ — 1 term vanishes

O

Lemma 1.15. If x is a primitive character with modulo q, then we have that

-1

Q

1 i
X(n) ==Y 7om(x) /e,
q m=0
Proof. Note that
q—1 qg—1 g—1 — q—1
Z T—m(X) eQﬂ’imn/q X 727szj/q 27rzmn/q ZX Z 627rim(nfj)/q'
m=0 m=0 j=0 m=0

Now by orthogonality relations, we know the inner sum vanishes if j # n mod ¢ and equals ¢ if j = n mod ¢. Thus
everything but the j = n term vanishes

q—1 — g—1
Z T,m( 27rzmn/q ZX Z eQﬂ'im(n—j)/q — X(n) q.
m=0 =0 m=0
Dividing through by ¢ completes the proof. O
Definition 1.16 (Root Number of a Character). Gi

Given a primitive character x, we define the root number of a
character W(x) as

T(x) _ )0 x(=1)=1
Wx) = 3 where 6= {1 W)= 1.

Lemma 1.17. We have that W(x) W(x) = 1.

Proof. We have that

Since x(—1) = (—1)%, everything cancels.



1.3 Riemann ( Function and Dirichlet L-Function
Definition 1.18 (Riemann ¢ Function). We define ((s) for Re(s) > 1 as the sum

o0

()=

ns
n=1

Definition 1.19 (Dirichlet L-Function). For x a Dirichlet character, we define L(x, s) for Re(s) > 1 as the sum

= x(n)
2

Lemma 1.20 (Euler Product of {). For Re(s) > 1 we have that
N e
—n’ . 1-1/p®

Lemma 1.21 (Euler Product of L-functions). For fRe(s) > 1 we have that

o0

L= X

— n° . x(p)/p*

Lemma 1.22 (Equivalent Form of ). Let

Gols) = —

We have that ((s) = (o(s) for o > 1.

Proof. Note that for o > 1 we have

e I D MY M T e

Thus

o

()= _n(n™=(n+1)"7)

n=1

Now we note that " o
s/ x_sx:s(—x_§> =n (n+1)
n x s n

So, substituting this we have

> > el dz o dx
1 T — = S —.
EZ: (n+1)7%) = s;n/n z™" — s/l |z]| = .

But noting that |z] =« — {a} we have that

C(S)Zs/l L:vj:v_s?x:s/l x_sdm—s/l {x}x—sf.

Evaluating the first integral completes the result. O

Corollary 1.23 (Meromorphic Continuation of ¢ to o > 0). We have that (o(s) has a simple pole at s =1 and is
meromorphic on the half plane o > 0.

Proof. Note that for o > 0 we have
sl

o0 d o0 oo
s/ {z}az™° x‘ < |s|/ |{x} x*3*1| dx < |s|/ 77 e = =2,
1 x 1 1 g

So this integral converges and we have that (o(s) is meromorphic on the half plane o > 0.
Additionally, it follows that (o(s) has a simple pole at s = 1. O




Theorem 1.24 (Analytic Continuation of ¢). We can analytically continue ¢ to the entire complex plane.

Proof. Recall that for o > 0, I'(s) is defined as

I'(s) :/ e s dt.
0

Now if we do the substitution t = nu, then after some manipulation we have that

n °T(s) = / e "ol gt
0

Now we take the sum over all n > 1.

¢(s)T(s) = Z n~°T(s) = Z /000 e "l at.

1<n 1<n

Now note that, using the substitution © = nt we have

> —ntys— >~ —ntyo— 1 > —-u,,0—
Z/O e t1|dt:2/0 e "t 1dt:Zn—U/0 e “u’Vdu =T(0)((0).

1<n 1<n 1<n

For o > 1 we know this converges. So by Fubini-Tonelli, when ¢ > 1, we can interchange the sum and integral as

needed. IS 1
ts—let

C(s)F(s):Z:/Oo e_”tts_ldt:/mZe_”tts_ldtz/ =2
0 0 0 -

1<n 1<n

Now using the substitution ¢t = 2u we have

Dots—l —t [ee] 2 s—1_-—2u oo, s—1_—2u
<<s>r<s>:/ ¢ dt:g/ Wiedu:zs/ wle
0 0 0

1—et 1—e2u 1—e 2

(1—21_3)C(3)1"(s)—/wt$—1 R G dt—/oots_l dt
) l—et 1—e2 Jo 14et

Using integration by parts with u = 1/(1 + €?) and dv = t*~!, we have that

. Y £ T et
(1—21 )C(S)F(S)—/O mdt— (s(l—i—et)) ‘O +§/0 mdt

Re-arranging we have

Thus,

st

s [T tte
(1-2 )C(S)F(s+1)—/0 e

1 tst
Sdt = ((s) = —

(s) (1_21—s)r(s+1)/0 (1+€h)2

Using integration by parts with u = e’/(1 + €')? and dv = t*, we have that

. e et B 5ot e 1 o0 g5l (g2 _ ot

Re-arranging we have

oo ts+1(62t —et) 00 ts+1(e2t —et)

1
(1_21—s)r(s+2)/0 Trep o

dt = ((s) =

(1—21_5)C(5)F(s+2):/0 AR

Repeating this procedure k-times yeilds an expression of the form

_ (=D)* X e (d° 1
Cs) = (1—21*5)I‘(3+k)/0 e (dtk 1+et> dt

Note that this expression is analytic for ¢ > —k for all k (except for the pole at s = 1); thus, we can extend ((s) to
the entire plane analytically (except for the pole at s = 1). O




Lemma 1.25 (((s) Zeros I). ((s) has trivial zeros at the negative even integers.

Proof. Note that from the previous proof, by the fundamental theorem of calculus, we have that

b= 2 (o ) e () [ (2 )|

t=0
One finds that . )

1 1 1-2 Bz

1+et :§+Z( (k+)1)}:+1
1<k ’
Thus for 1 < k we have . i i
-1 — 1) _ _
C(l—k):—( (kD! ((A-29B) _ (=1)"Bk
(1 —2F) k! k

So, if 1 — k is even then k is odd and By = 0; thus, (1 — k) = 0 also. O

Lemma 1.26 (((s) Poles). {(s) has a pole at s = 1 with residue 1.

Proof. Note that for fixed s € R, t7° is a monotone decreasing function. Thus we have that
n+1
n+1)7° < / t75dt <n”d.
Summing over all n > 1 we have
C(s)—1< / t=%dt < ((s).
1

Noting that the integral evaluates as (s — 1)~1, rearranging gives us that 1 < (s — 1) ((s) < s. Letting s — 1 from
above gives the desired result. O

Definition 1.27 (Jacobi 6 function). We define the Jacobi 6 function as follows. Let

0ty = ™t =142 ™

nez 1<n

Lemma 1.28 (Functional Equation for §). We have that
0(1/t) = Vto(t).

Proof. Note that via Poisson summation we have

9(1/t) = Z e_ﬂnz/t — Z / 6—77712/te—27r1'mn dn
R

nez meZ

By using the substitution n = u+/t we have that
/ e~ [te=2mimn g, \/7?/ exp<—7ru2 — 27rimu\/f) du
R R
= \/E/ exp(—ﬂ(u2 + 2imu/t — m2t + m2t)> du
R
= e_”mzt\/f/ exp(—ﬂ'(u + im\/f)2> du = e ™™ VL.
R
Thus we have that

9(1/t) _ Ze—ﬂn2/t _ Z / e—ﬂ’n2/te—2‘n’imn dn = \/Z Z e—‘n’mQt _ \/iﬂ(t)
R

neZ meZ meZ



Theorem 1.29 (Functional Equation for ). We have that
['(s/2)¢(s) _ T((1 = 5)/2)¢(A = 5)

T8/2 m(l=s)/2

Proof. Recall the definition of the I' function and substitute x = mn?¢:

F(S/Q) = / 67Ix5/2*1 dr = 7rs/2ns/ efwn("tts/271 dt.
0 0

Thus

7 s/2T I(s/2)¢ Zn T 5/21“ (s/2) = Z/ —mn’tys/2=1 gy

1<n 1<n

Now note that, using the substitution v = mn?t we have

Z/ e~ tts/2 1‘dt Z/ —mn tta'/2 1dt_ﬂ,7¢7/2zna/ —u a/2 1d C( 31-053/2)

For 0 > 1 we know this converges. So by Fubini-Tonelli, when o > 1, we can interchange the sum and integral as
needed.

s/QF 5/2 Z/ e tts/Q 1 dt = / Z e~ tts/2 1 dt = / (Q(t) _ 1) Z55/271 dt.

1<n 1<n

Applying linearity, we note that

oo 1 0o
/ (e(t) _ 1) t8/2_1 dt = _2 _|_/ g(t) ts/2—1 dt 4 / (Q(t) _ 1) ts/2—1 dt.
0 s 0 1

Focusing on the first integral and using the substitution ¢t = 1/u, we have

1
/ O(t) /> dt = / 0(1/u)u=/?" 1du—/ O(u) u=)/271 qu,
0

via the functional equation for 6. Thus,

2

1 o) [e%s}
/ a(t)ts/Hdtz/ H(t)t(l’s)/Q’ldt:/ 0(t) — 1) t1=)/2= .
0 1 1 s—1

720 (s/2) ((s) = —— (117 5+ /100(9@) —1) (2 002

Noting that the RHS is equivalent under the substitution s <> 1 — s completes the proof. O

So we have that

Lemma 1.30 (((s) Zeros II). Every non-trivial zeta zero lies in the strip 0 < o < 1.

Proof. Let o < 0 such that s is not a trivial zeta zero and ((s) = 0. Then 1 — ¢ > 1, and from the Euler product
expansion of ¢ we know that {(1 — s) # 0. So, from the functional equation, we have that

_ L((1-1s)/2)
= — g2 (2 2V 1— ).
0=t =m2 (HE2 ) -
Now recall Euler’s reflection formula and Legendre’s duplication formula which state

™

I'(z)T(1—2z2)= and  T(2)T(z+1/2) = 2'72%/7 T(22)

sinmz
respectively. Substituting z = s/2 into the first, and z = (1 — s)/2 into the second, we have

I(s/2)T(1 - s/2) = m and  T((1—s)/2)T(1—s/2) = 2°v/aT(1 — s).



Thus,
I'((1-s)/2) 2°T(1—s) sin(ws/?).

Ms2) NG

So we have that,
(27)° T'(1 — s) sin(ws/2)

s

0=ct= Jet-a

Since (1 — s) # 0, and noting that I'(1 — s) # 0 also; it must be the case that sin(rs/2) = 0. Thus, s =
_9, 4, —6, ...
Therefore, any other zeros must lie in the strip 0 < o < 1. O]

Theorem 1.31 (Analytic Continuation of L-functions). We can analytically continue L(x, s) to the entire complex
plane.

Proof. Recall that for all o > 0, I'(s) is defined as

I'(s) :/ e tts T dt.
0

Now if we do the substitution ¢ = nu, then after some manipulation we have that

n°T(s) = / e M5 dt.
0

Now if we take the sum over all n > 1 with character x.
o0
Z x(n)n=*T(s Z x(n) / e sl gt
0

1<n 1<n
Now note that, using the substitution © = nt we have

Z/ ye Mt 1]dt<2/ e Mol at = an/ e " u”tdu =T(0)((0).

1<n 1<n 1<n

For o > 1 we know this converges. So by Fubini-Tonelli, when ¢ > 1, we can interchange the sum and integral as

needed.
ZX / 7ntts 1 dt = / ZX 7ntts 1 dt.

1<n 1<n
We now break up our sum modulo ¢ where n = j + mq,

e s} ts_l e—jt

—ntsl — mgq)tys—1 .
9= [T Xxmerteta= Yo [T erta= 3 ) [

1<n 1<]<q 0<m 1<j<q 0

Now using the substitution ¢t = 2u we have

ts—le—jt s—1 ,—2ju

Lot = 3 x0) [ ioma=2 30 [ B a0 [

1<j<q 1<j<q 1<j<q

Thus,

(1=2""") L0, 9)T(s) = > X(j)/ooo t (1 i::iqt - 12—6e2j2tqt> a

1<j<q
o [ g (eIl = 2e7It 79
= X(J)/ t 1( T ) dt.
1<j<q 0

Now note that if t =0 then e * = 1. So, 1 —2e7* + e 9 =0 and 1 — e 29" = 0. Thus we can factor a 1 — e~* term
out of the numerator and denominator to get

(1=2""*)L(x,s)T(s) = Y x(j) /OOO =t (1+e—t f{?cj;)e—(Qq—l)t) dt

1<j<q

10



where P; is some degree j + ¢ — 1 polynomial. Using repeated integration by parts and rearranging gives us an
expression of the form

—_1)k oo
L(x,s) = 1 —21(3;}(84—/{) Z X(])/ terk_le,k(e_t) dt

1<j<q 0

where Q) ; is some quotient of polynomials with Q; ;(e~") having exponential decay at occ.
Note that this expression is analytic for ¢ > —k for all k; thus, we can extend L(x,s) to the entire plane
analytically. O

Lemma 1.32 (L(x, s) Negative Values). For k > 1 we have that

-1)kB telt B,
Lix,1-k) = _ (2D By where Z x(5) c Z ZnXx yn

k ‘ n
1<j<q 0<n

Proof. (Sketch) Note that by the fundamental theorem of calculus and the previous equation we have that

-1 —t — i dk_l Pj et
L(le_k)_ (](_) / ij dt (( ) ) Z X<]) (dkll_ﬁ_et_’_f._i_)e@ql)t)

1<J<q 1<j<q t=0

By evaluating the power series expansion of

(et

1+et fj(:e -1t ;ﬁ et
then for 1 < k we have i
LOL=B) =~ 3 Gk Dlejinn),
1<j<q

Actually evaluating c;j ;1 and substituting yields the desired result. O

Definition 1.33 (Twisted 6 Function). Given a primitive character x with modulo q, we define 6 =0 if x(—1) =1
and 6 = 1 if x(—=1) = —1. Now we define the 6 function twisted by the character x as

= Z néx(n) et — 9 Z néx(n) e~ t/a
nez 1<n
Lemma 1.34 (Functional Equation for Twisted 6 Functions). We have that
Oy (1/t) = W (x) /27 (1)
Proof. Recall that we can express x(n) as a linear combination of 7_,,(x) with m ranging over Z/qZ. Thus we write

q—1
l/t — T— Z 8 27r7,mn/q wnz/(qt) (1)
m=0 nez

We will revisit this equation later. By Poisson summation, and using the substitution n = u\/r we have that
Z e —7 (z+n)?/r Z / —7(z+n)? /T e=2mimmn o \[ Z / 77r(u+w/f)2 —2mimuy/r g,
nez meEZ mEZ

Now note that

2 2
—T <u + j;) — 2mimun/r = — <u + % + zm\/F) + 2mizm — Tm?r,

so we have that

2
Z e~m@tn)*r —  /r Z exp(2mizm — mm?r) / exp <—7T <u vy ZTTL\/;) ) dr.
nez meZ R \/,F

11



The inner integral is trivially 1. So after some manipulation we have
Z eZTri:cn—ﬂ'nzr — ’l“_l/2 Z e—ﬂ(:c+n)2/r-
nez nez

Differentiating term by term w.r.t the variable x (we can do this because of the exponential decay in the terms as
n — £o00) and rearranging slightly we have

Zne%ria:nfwn%" _ Z‘T,73/2 Z(gj + Tl) e*‘n'(a:+n)2/r'
nez neEZ
So, if we let x = m/q and r = 1/(qt) then by algebraic manipulation we have
Z n5627rimn/q—7rn2/(qt) — (qt)1/2+6 Z(m/q + n)ée—‘fr(m/q—kn)zqt-
neZ nez

So returning to [I| we have that

1/246 9—1
(qt) 32 ) 3 m e

nez
(it) \/7 Z Tom m—|—nq) —mlmina*t/a — (jp) \/72n Ton(x) e ™,
Recalling that Y(—n) 7(x) = 7_n(X), noting that x(—n) = (—=1)°x(n), and —i = 1/i; we now have that

nGZ nez
0, (1/t) = 7( <) \[Zn X(n) €™ 9 = W () 111240 0 (1)

nez

0, (1/t) =

exactly as desired. O

Theorem 1.35 (Functional Equation for L-functions). For a primitive character x with modulo q and x(—1) =
(—=1)°, we have that

(g>s/2 I'((s+6)/2) L(x, s) = W(x) (2)“*5)/2

™ m

I((1—5+0)/2)L(x,1 - s)

Proof. Recall the definition of the I' function and substitute x = 7n?t/q:

o o\ 510)/2 poo )
I((s+6)/2) = / e T (s+8)/2=1 g — s (> / nde—m t/ay(s+6)/2—1 gy
0 q 0
Thus
AN n) (q\(+9/2 = 2t/ qu(s46)/2—
(*) D((s+6)/2) L(x,s) = ) x(n) (—) T((s+9)/2) :Z/O x(n) nfe~ ™ t/ay(s+8)/2=1 gy

™ ns T
1<n 1<n

Now note that, using the substitution u = mn?t/q we have

Z/ n et/ qy(s+6) /2~ 1‘dt< Z/ nd o= t/ap(o+0)/2-1 3y

1<n ten
- (3 )W)/ZZW/ et = (1) p(a 4072 (o)

For o > 1 we know this converges. So by Fubini-Tonelli, when ¢ > 1, we can interchange the sum and integral as
needed.

q\ (s1+9)/2 nd o= t/ay(s+8)/2-1
(;) T((s+4)/2) L Z/ et dt

1<n

/ ZX B o t/ay(s8) /21 gy _ / 0,.(1) ¢(+0)/21 gy,

1<n 0

12



Applying linearity, we note that
/ 0, (1) L9/21 gy — / 0, (1) ¢(+0)/2-1 gy +/ 0,,(1) +0/21 gy
Focusing on the first integral and using the substitution ¢t = 1/u, we have
1 1 oo
/0 . (8) 1921 gy — — /m By (1/u) u=+D/2L iy = W () /1 () u=5+0)/2-1 gy
via the functional equation for . So we have that
2 (%) (e D((s+6)/2) L(x,s) = W(x) /100 O (t) tI—s+0/ 2= gy 4 /100 0, (t) tT9/2=1 gy
By replacing x with X and s with 1 — s we have
2(%)07H$V2F«1—3—F®/m L(x,1—5) = /ﬂ O (t) t(+0)/2 1ﬁ-+/q 0, (t) t1—s+/2=1 gt

Multiplying through by W(x) and recalling that W (x) W(x) = 1, we have

(1—s+8)/2 o0 oo
2W (x) ( ) T((1—s+6)/2) L(x,1—s) = / 0, (£) 0271 gt 4 W (y) / O () t0—s+9)/2=1 gy
T 1 1

Thus,

g\ (5+8)/2 g\ (1=s+8)/2 7

2 (4)7 (s + 9)/2) Lixs) = 2W (0 (£) T((1—5+6)/2) L(X, 1 - 9).

T T

Removing common factors on both sides proves the desired result. O

Lemma 1.36 (L(x,s) Zeros). Every non-trivial zero of L(x,s) lies in the strip 0 < o < 1.

Proof. Let o < 0 such that L(x,s) =0. Then 1 — ¢ > 1, and from the Euler product expansion of L-functions we
know that L(x,1 — s) # 0. So, from the functional equation, we have that

7 V2T((1 — s+ 6)/2) _
¢ 2T((s +0)/2) ) Lix1 =)

0= L(x,s) = W(x) (

Now recall Euler’s reflection formula and Legendre’s duplication formula which state

™

I(z)T(1—2) = and  T(2)T(z+1/2) =2'2*/7 I'(22)

sinmz
respectively. If § = 0 then substituting z = s/2 into the first, and z = (1 — s)/2 into the second we have

T(s/2)T(1 - s/2) = m and  T((1—s)/2)T(1—s/2) =27 (1 —s).

Thus,

I'(1—-s+9)/2) _ T'((1—s)/2)T(1 —s/2) _ 2 I'(1 — s)sin(ws/2)
GO - MR- 5 N
So we have that,

0= £0s) = Wi (BE Iy,

Since L(x,1 — s) # 0, and noting that T'(1 — s) # 0 also; it must be the case that sin(ws/2) = 0. Thus s =
9, 4, 6, ...
Therefore, any other zeros must lie in the strip 0 < o < 1.

If 6 = 1 then substituting z = (1 — s)/2 into the first, and z = (1 — s)/2 into the second we have

T((1—s)/2)T((1+5)/2) = m and  D((1—s)/2)T((2 - s)/2) = 2°V/a (1 - s).
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Thus,
N((1—-s4+0)/2) T{(1-9)/2)T((2-15)/2) _ 2 (1 — s)sin(w(1 — 5)/2) _ 2 I'(1 — s) cos(ms/2)

L((s+0)/2) — T((1-s)/2)T((1+5)/2) e VT

So we have that,

(2m)*T'(1 — s) cos(mws/2)
ﬂ-qs—l/2

0= L) = W00 ( ) pwi-s),
Since L(x,1 — s) # 0, and noting that I'(1 — s) # 0 also; it must be the case that cos(mrs/2) = 0. Thus s =

-1, -3, =5, ....
Therefore, any other zeros must lie in the strip 0 < o < 1. O
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1.4 Dirichlet’s Theorem on Primes in Arithmetic Progressions & PNT
Theorem 1.37 (Infinitely Many Primes from ((s)). There exist infinitely many primes.

Proof. Let s > 1 be real. For all questions in this proof regarding convergence, it suffices to check that |1/p®| < 1
for all primes p. From Lemma [[.20] we know that

=3 =T
=t 1—1/ps’
So by taking the logarithm of both sides, we know that

log ((s Zlog 1-1/p°).

Now recall that for |2| < 1 we have that —log(1 — z) = 2z + 22/2 + 23/3 4+ .... Now we have that

log ((s Zznm—z Zzn ns’ (2)
p 1<n p P p 2<n P
But now note that
1 I p 1 - (1 _1) (1_1)
;gnp”s_ggp“_glfp*_zp:pﬁ(psfl)_zp: p-1 p° SZP: p—1 p

Continuing we have that

Now returning to we have that
1
log{(s) < ) o T 1.
P

If we suppose that there are finitely many primes then we have that lim,_,;+ ((s) < oo; however, this directly
contradicts Lemma[T.26] So, there must be infinitely many primes. O

Theorem 1.38 (Non-Vanishing of L(, 1) implies Dirichlet’s Theorem). If L(x, 1) # 0 for all Dirichlet characters
X # Xo, then there exist infinitely many primes p = a mod q when (a,q) = 1.

Proof. Let s > 1 be real. For all questions in this proof regarding convergence, it suffices to check that |1/p®| < 1
for all primes p. From Lemma [[.2T] we know that

— x(n) 1
L(x,s) = e =||1_
n=1 P X

So by taking the logarithm of both sides, we know that

log L(x, s Zlog 1—x(p)/p%).

Now recall that for |z| < 1 we have that —log(1 — 2) = 2z + 22/2 + z3/3 +.... Now we have that

IOgLX’ ZZ np ns'

p 1<n

By the above we have that

1 1 " 1 1
5 Ex@lsies) =~ St XY A oSS Y s

XEXq p 1<n p 1<n ® XE€Xq




Now applying Lemma we have that

E DI RS B I S ED S-S 31 BID DEE- PG

XE€EXq 1<n p p 2<n P
- p=a mod q p=a mod q p""=a mod ¢

But now using a similar argument as in Theorem we know that

1

2<n p

p"=a mod q
Thus, we have that
: L - 1 .
lim —— Z X(a)log L(x, s) = 0o < Z — = 00 <= Dirichlet’s theorem. (4)
=1+ 9(a) o —~ P
¢ p=a mod q

Now note that

lim 1 Z X(a)log L(x, s) :Slir?+ Xo(a) log ((s)H(l —1/p%) | + lim 1 Z xX(a)log L(x, s).

o1+ 9(e) o v(9) via =1+ () o
X7Xo0

Now note that lim,_,;+(1 —1/p®) =1 —1/p and lim,_,;+ {(s) = co by Lemma Thus by we have

1
lim —— Z x(a)log L(x, s)| < oo == Dirichlet’s Theorem.
o1t pla)

X7#X0

But now note that if L(x,1) # 0 for all x # xo then the left hand side of the above must be true. So we have that

L(x,1) # 0 for all x # xo = Dirichlet’s theorem.

Lemma 1.39 (Proof that L(x, 1) # 0 for x Complex). If x is complex then L(x,1) # 0.

Proof. Now recalling equation and substituting a = 1 we have

. 1
s~>1Jr (p Z logL X 8) = Slir{h Z Z npns

XEX 1<n p
p"=1 mod g
= lim log L > li L > 1.
Jim 3 dogL(xs) 20 = lm ] Zixs) >
X€EXq XEXq

Now suppose that x is complex and L(x, 1) = 0. Then we have that

tim T L) = Jim Lixo,s) [T Z0us) = tm ¢6s) (T =1/ | T] L0vs) =

xX€Xq xX€Xq plg XEXq
X7#X0 X#X0

This is because L(x,1) = L(x,1) = 0, {(s) has a simple pole at s = 1 by Lemma and every other term is
analytic at s = 1. This of course is a contradiction. O
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Lemma 1.40 (Elementary Proof that L(y,1) # 0 for x Real). If x is real then L(x,1) # 0.
Proof. (See Davenport Chapter 4 pp 33-34.)

Now suppose that x is real and L(x,1) = 0. Let us define

L(x; s) L(xo, s)
L(X07 25) .

Note that the numerator is analytic on the region PRe(s) > 0 since by assumption L(, 1) = 0 cancels with the simple
pole of L(xo,s) at s = 1. The denominator is non-zero and analytic on the region PRe(s) > 1/2. Thus, 1 is analytic
on the region Me(s) > 1/2. Additionally, since L(xo,2s) — oo as s — 1/2 we note that 1(s) — 0 as s — 1/2.

Now note that we have the Euler product expansion for v (s) as

_ 1— xo(p)p~
v = 1;[ L =x(@)p~)1 = xo(P)p~*)

b(s) =

2s

Now if p | ¢, then xo(p) = x(p) = 0. So,

1 - xo(p)p~* _
(1 =x()p=*)(1 = xo(p) p~*)
If ptq, then xo(p) = 1 and x(p) = £1 since x is real. If x(p) = —1, then
1—xo(p)p~* _ 1—p% .
A=x@pr )L =xolp)p®) A+p*)1-p~*)
Alternatively; if x(p) = 1, then
1—xo(p)p—™* 1—p % _1+p®

(I—x)p)1-xo@p==) A—-p=)1—p==) 1—p==

So we can write the Euler product expansion for ¢(s) as

_ 1—xo(p)p~* B l+p®
vis) = 1;[ (I=x@)p)1-xop)p—) 11 1 '

And now on the region fe(s) > 1 we have

1 + p—s —s —s —2s _ —s
d(s)= ][ = [T a+p)+p = +p>+..)=> awm
plg plg 1<n
x(p)=1 x(p)=1
where a; =1 and a,, > 0 for all n > 1. Thus ¢(s) > 1 for s > 1.
Alternatively, since 1 is analytic on Re(s) > 1/2 there exists a power series expansion about s = 2 with radius of
convergence at least 3/2.

(m)
w() = 3 LB gy

0<m
However, recalling our Dirichlet series we have that
m m an(logn)™ m
pm(2) = (- 32 BT gy
1<n
where b,,, > 0. Thus,

W)= Y 2

m!
0o<m

for |2 —s| < 3/2. If 1/2 < s < 2 then note that we have

P(s) 2 ¥(2) > L.
But this contradicts the earlier fact that ¢(s) — 0 as s — 1/2. So L(x,1) # 0 as desired. O
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Lemma 1.41 (Algebraic Proof that L(x, 1) # 0). For all non-trivial Dirichlet characters we have that L(x,1) # 0.

Proof. (See Iwaniec-Kowalski Chapter 2 pp 38.) Sketch:
The product

IT Zes) = Cxls)

XE€Xq

is the Dedekind zeta function of K = the cyclotomic integers at ¢(g)-th roots of unity. By the class number formula
we know lim,_,1+(s — 1) {x(s) # 0 (note here the pole at s = 1 comes from L(xo, $s)); so no L(x,1) can vanish for
non-trivial y # xo because then this limit would be 0. O

Definition 1.42 (Von Mangoldt Function). We define the Von Mangoldt function, denoted A, as

A(n) logp n = p* with p prime
n) =
0 otherwise.

Lemma 1.43. We have that

¢'(s) 3 A(n)

¢(s) = ont

Proof. Using Lemma [1.20| we have that

log¢(s) = =Y log(1—1/p°).

By taking the derivative of both sides we have

('(s) _d _ log(p)
(o)~ BT

p

1 lo A(n
= log(p) <1_1/ps—1> == pgn(f) == ,Es)

Lemma 1.44 (Non-Vanishing of {(1 + it)). We have that
C(144t) #£0 forallt e R

Proof. Let ‘
Fi(0) = C(0)?¢(o +it)? C(o — it)* (o + 2it) ¢ (o — 2it).

Note that since ((5) = ((s) we have that Fi(c) is real valued. Using the Euler product expansion for ¢ > 1, we now
examine the series expansion of log F (o).

3 4+ 9p—it 4 it 4 =2t | p2it
logFt(o):ZZ L p_TPp Lo

npns
p 1<n p

But now note that 3 + 2p~¢ + 2pit + p=2i 4 p?it = (1 4+ p' 4+ p~)2. Since p** and p~* are conjugate, we know that
14 p'* 4+ p~# is real. Thus 3 + 2p~ % 4 2p® 4 p~2% 4 p2¥ ig real and non-negative. By extension

3+2 7it+2 it+ 72it_~_ 24t
log Fy(o) =Y Y 212 fpm P P >0 = F) >1 (5)

p 1<n

Now suppose that there exists real t # 0 such that {(14it) = 0. Then we have that ¢(1—it) = 0 also. Now, since

¢ is analytic at 1+t and 1 — it we have that (o +it) = O(c — 1) and {(o0 —it) = O(c — 1) as ¢ — 17. Additionally,
since ¢ has an order 1 pole at s = 1, we have that ((0) = O((c —1)7!) as ¢ — 1*. Noting that there can not be a
pole at (o £ 2it), we immediately have that lim,_,;+ F;(c) = 0. This is a contradiction. Thus, (1 + it) # 0. O

Lemma 1.45 (Bound on (¢'/¢)(s)). For |t| > 3 there exists a constant C € (0,1/2) such that
C/

< < log? |t] where o>1-C/loglt].
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Theorem 1.46 (Chebyshev Formulation of PNT). We have that
x) = Z Aln)=z+0 (x exp(—chogm))
n<z
where ¢ is some constant. Here v is usually called the Chebyshev function.
Proof. Fix some smooth non-negative y with compact support in [1/2, 2] such that

- e dy
0= [ xw Y-t
0 Y
Additionally, note that by IBP we have that
- e s dy x@)y T 1 [ s 1 /2 s 1
X(s) =/ Xy — = (U +o | XWydy=< | Xydy< <.
0 0 0

Y s
Additionally,

s) = / " () exp(slogy) %y

=/0°°x<y><1+slogy+o<52>>dyy

- / T W d—;’ b s / " () log(y) % L O(s) = (0) + 5 / RO % L O(2) = 14 0(s).

Now fix € > 0 and let x.(y) = x(y'/%)/e. Then note that y. is non-negative with compact support in [27¢, 25] and

Xe(y - x(y'") — = x(u) — =1
/0 =2 [ = @

this uses the substitution v = y'/¢ which gives edu/u = dy/y. Now let ¢ = 1,1 and let p. = ¢ * xc by Mellin
convolution. We then have that ¢.(x) =1 for z < 27¢ and ¢.(z) = 0 for z > 2° with some smooth behaviour on
the interval [27¢,2¢].

Now we switch focus. By the inverse Mellin transform we have that

1 ¢
5 o <C( )> Y2t ds = ZA ve(n/x) = (x) + Oexlog x) (6)

since A(n) < logz for n < z and ¢.(n/z) differs from ¢(n/z) by less than 1 on an interval of length ez up to
constant. This is because 2° — 27¢ behaves like 2¢log 2 around € = 0.

Now we pull contours. This gives us a new contour of integration, call this v, which is such that we have the
nice bound on ¢’/¢ along « in accordance with Lemma Pay attention to the fact that we must now include the
residue of the pole at s = 1. Thus,

3, (F50) Fora= e+ o [ (<50) et

But now note that p-(1) = @(1) - x(e) =1- (1+ O(e)) =1+ O(e) since p(s) = 1/s and X¥(0) = 1. Thus,
1

o [ () rtas et L [ (-£0) et as o) (7

Now we focus on our integral over . Let T > 1, we break it up into three separate integrals

IS

We focus on the third integral first. Note that

[T (-50) moeal< [T

~ L, (1 > Vidt T

Pe(s) 27 ds <</

T
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since |—¢/¢| < log?|t| by Lemma [1.45, and 5.(s) = 3(s) - X=(s) = X(e5)/s < 1/(es?), and 27 < z for o < 1.
Following an identical procedure yields the same bound on the first integral. Now for the second integral, note that

[ (fw)zoral<],

where D is taken to be the supremum of |(’/(| over the curve (which is compact, so D exists and is finite). Now
putting together equations @, , , and @ we have that

/

s
—50)

1 xlfc/logT

T
’*; o <D 1-C/logT )
Ve(s)x?ds < /T<E(1+t2)>x dt <« . (9)

W(x) + O(exlogz) = = + O(ex) + O (;ﬁ +0 (xl_c:gT> .

Now we optimize in 7" by letting /T = 2¢/1°8T Thus, logT = /2CTog z. Now note that

C C Clogzx
C/logT __ _ 1 _ I | _ P =Tl I
x —exp( ] ogx) —exp( AT ogaz) —exp< A/ 5 )

So, by absorbing O(ex) into O(ex log ) and substituting the above, we have

x Clogx
w(x):x+0(sxlogx)+0<€ exp (—\/ 5 ))

Now we optimize in € by letting e logx = exp(— (Clog x)/Z) /e. Thus,

e=e€ p( \/CIng 1 10g10gx>
= X _— PR — .
8 2

Now note that

C'1 1 C1 1
exlogx = wexp (— Zga? —5 loglog a:) exp(loglog z) = xexp <— ;gx + 3 loglog x) .
So by substituting the above, we have
Y(@)=24+0 (a: exp(—c\/log x) v/log x)
where ¢ = /C/8. We can absorb the y/logz into the exponential to get the desired result. O

Corollary 1.47 (Traditional PNT). We have that

as r — 00.

Proof. Note that

x
A(n) 1 1 1 1 Toodt
H(i)zzlogn and logn :10g$+ <_logl‘> ’ :10g33+/n tlog”t’

n<x

Thus,

T1(z) Y(x) n Z A(n) /I dt _ Y(x) N Tap(t)dt

Clogr T A n tlog?t  logz ' Jy tlog’t’

Now by the Chebyshev formulation of the PNT, we know that for all € > 0 there exists z. such that for all z > z,
we have that (x) = x + O(ex). Thus,

H(I)x+O(em)+/21t+O(et)dt(1+O(€))< x +/; dt )

log x tlog®t log log®t
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Now note that

/”’ dt _/ﬁ dt +/m dt
2 log?t 2 log?t \/gloggt

S(ﬁ;2)+(x—2ﬁ)§ \/25 n 4925 O( $2 )
log® 2 log® vz ~ log“2  log“z log” x

Putting these together and letting ¢ — 0 we know that

X xr
11 ~ + 0 .
() gz (logg x)

Now note that

1/2 1/3 1/2 1/3
H(x):w(x)+7r(x2 >+7T(x3 )+,..<w(x)+%+%+,,,:w(x)+o(\/§).
So the desired result follows immediately since /z is O(z/log? z). O

Corollary 1.48 (n-th Prime Growth). We have that p,, ~ nlogn.
Proof. FAKE NEWS: From the traditional PNT we know that

- P
n=m(py) ogpn”
Thus,
Pn ~ nlogpy

~ nlog(nlogp,) = nlogn + nloglog p,

~ nlogn + nloglog(nlogp,) = nlogn + nloglogn + nlogloglog p,

~ nlogn + nloglogn + nlogloglogn + ...
Ignoring the higher order terms, the desired result follows. O

Proof. LEGIT: From the traditional PNT we know that
m(n) L mp)

1= lim = lim = I —
n—oonlogn  n—oop,/logp,  n—oo p,/logpy

Thus, taking the reciprocal of the last equality and simplifying we have

. Pn
1=1 10
n1~>n;o nlogp, (10)
Taking the logarithm of both sides we have
. } logn  loglogpy, ) logn
0= lim logp, —logn —loglogp, = lim logp, (1 — — = lim logp, (1 - ,
n—oo n—o0 logpn  logpn n—oo log
since lim,,_,~, loglog p,,/ log p,, = 0 trivially. But noting that lim,,, + log p,, # 0 we must have that
1
lim —8 — ]
n—oo log p,
And now by the above and equation ([10) note that
n . n 1 n
lim —27 = g —Pr 8P gy
n—o00 nlogn n— o0 ’I’Llngn logn
O
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Corollary 1.49 (Primorial Growth). Let P,, be the n-th primorial, the product of the first n primes:

P, = Hpn

k<n
We have that P, ~ exp((1+ o(1))nlogn).

Proof. Note that

p<w p<w p<n”P

From the traditional PNT we know that 7(z) ~ z/logx + o(z/logx). Thus

m(z)l ~ x4+ d —=dt = — + — | = .
(x)logx ~ x + o(x) an /2 : L Togi 0 </2 o t) o(x)

Thus > ., logp =z +o(x) — o(x) =  + o(x). Now note that

Po=]]pn=ecxp| D logp | =exp(pn + o(pn))-

k<n P<pn
From the above, we know that p,, ~ nlogn; thus,
P, ~exp((1+4 o(1))nlogn)
as desired. O

Theorem 1.50 (Chebyshev Formulation of PNT for Arithmetic Progressions). We have that

S 2 @ X xm) A = 40 (vexp (~ey/loga))

Vaa(®) = ©(q ©(q)

x mod g n<x
where ¢ is some constant.

Proof. Fix some smooth non-negative y with compact support in [1/2,2] such that

5(0) =/0°° ) =1,

Additionally, note that by IBP we have that
~ oo .d s\ 1 [ . 1 (2 . 1
X(s) =/ Xy = (X(y)y> + 7/ X (y)y®* dy = f/ X (y)y* dy < —.
0 Yy S 0 0 1 S
Additionally,
N o d
X(s) = / x(y) exp(s logy)gy
0
o0 d
- / X1+ slogy + 0(s2)
0
00 dy o) dy _ 2 dy
- / L+ / () Tox() 2 + 0(*) = X(0) + 5 / W) 108) U 0 = 140().
1

Now fix € > 0 and let x.(y) = x(y'/%)/e. Then note that y. is non-negative with compact support in [27¢,2°] and
o dy 1 /°° 176 1Y /°° du
Xely) — = = xy'")—= x(u)— =1
|2 [ = [ ws
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this uses the substitution v = y'/¢ which gives edu/u = dy/y. Now let ¢ = 1,1 and let . = ¢ * x. by Mellin
convolution. We then have that ¢.(z) =1 for < 27¢ and ¢ (z) = 0 for > 2° with some smooth behavior on the
interval [27¢, ¢].

Now we switch focus. By the inverse Mellin transform we have that

1 Z YQ(:Z) /(2) (—Zﬁ(s)) Ve (8) x°ds = ﬁ Z ZX n) pe(n/x) = aq(x) + Olexlogx) (11)

QO((]) x mod g x mod g

since A(n) < logz for n < z and ¢.(n/x) differs from ¢(n/x) by less than 1 on an interval of length ez up to
constant. This is because 2° — 27¢ behaves like 2¢log 2 around € = 0.

Now we pull contours. This gives us a new contour of integration, call this v which is such that we have the nice
bound on L;( /Ly, along « in accordance with Lemma Pay attention to the fact that we must now include the
residue of the pole at s = 1. Thus

(B G et ds = 31y ot 6 +i/ B9 Gats) ot ds
2mi Joy \ Ly ) ¥E — oo Tom |\ L) e '

But now note that p-(1) = @(1) - X(¢) =1- (1 + O(¢)) since ¢(s) = 1/s and X(0) = 1. Thus,

1 X@) [ (B ey et s — E oy b X(a)
o(q) > 2 /(2>< Lx( )> pels)atd OB 2 2mi /

x mod g x mod g v

(_i;(s)) Pe(s)x®ds + O(ex). (12)

X

Now we focus on our integral over v. Let T > 1, we break it up into three seperate integrals
T T 00
L=1 1)
o’ —o00 =T T
We focus on the third integral first. Note that
dt
log? t< > rdt € — / \/ < —. (13)

J (o) sowaf< [Tz <o

since | =L} /Ly| < log? |t| by Lemma and p.(s) = @(s) - Xe(s5) = X(es)/s < 1/(es?), and 2° < x for o < 1.
Following an identical procedure yields the same bound on the first integral. Now for the second integral, note that

|/ )%()msds S/TT

pe(s)z?ds < /

T

Lol e
—fX(S) pe(s) 2 ds

14
xlfClogT ( )

T
1
1 2 1 ¢ 1-C/logT dt
<[ ()

Now putting together equations , , , we have that
r p1-C/logT
Ya,q(x) + O(exlogz) = 2@ +O0(ex)+ O (5\/>> +0 (5) .
Now we optimize in T by letting v/T = 2¢/1°8T Thus, logT = /2CTlogT. Now note that

C C Clogx
—C/logT _ _ 1 — [— = — .
x exp ( Tog T og x) exp ( 5CTos s og x) exp < 5 )

So, by absorbing O(ex) into O(ex log ) and substituting the above, we have

x Clogx
Yaq(x) = @ + O(exlogzx) + O ( exp ( 5 )) .

Now we optimize in € by letting ¢ logz = exp (— (Clog x)/2) /e. Thus,

€ = exp ( Clogz 1 log logaz>
= X _— PR .
8 2
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Now note that

Clogzx
8

Clogzx
8

1 1
exlogx = rexp (— —5 log log :U) exp(loglog z) = x exp <— + 5 log log x) .

So by substituting the above, we have

Ya,q(x) = ﬁ +0 (:17 exp <fc\/@) \/@)

where ¢ = /C/8. We can absorb the y/logz into the exponential to get the desired result. O

Corollary 1.51 (Traditional PNT for Arithmetic Progressions). For m, 4(x) the prime counting function of primes
less that © equivalent to a mod gq, if (a,q) = 1 then we have that

1 x

71'a,q(x) ~ W : log

Proof. Note that
1 _ x(n) A(n) 1 1 1" 1 /w dt
Ha = — - 7 - 7 d = — = .
al®) ©(q) Z x(a) nz;x logn a logn  logz + log t log = * n tlog?t

g q(z) = M + Z A(n) /m At tag(x) T T Paq(t) dt.

log x n tlothi log 2 tloth

n<z
n=a mod ¢q

Now by the Chebyshev formulation of the PNT, we know that for all £ > 0 there exists x. such that for all x > x.
we have that ¢, 4(z) = 2/¢(q) + O(ex). Thus,

Ha,q(m):x/@(fﬁw(m)+/2$’5/<P(q)+0(5t)dt:(1/(p(q)+0(€))< z +/j dt )

log x tlog?t log log?

/” dt _/ﬁ dt +/“ dt
2 log?t 2 log?t \/gloth
S(\/E;2)+(x;\/§)§ \/25 " 4923 O( 952 )
log® 2 log“ vz ~ log“2  log“z log” x

Now note that

Putting these together and letting e — 0 we know that

1 T T
I, ~ . + 0 )
(@) w(q) logz <log2 :c)

Now note that

1 1 o2 /3
Ha,q(;v)zwa,q(x)—l— Z 5—’— Z g—f—S’ﬂ'a’q(.’ﬂ)‘FT‘f’T'i_:ﬂ—a,q(m)"'o(\/‘%)
p§$1/2 prl/S
p?=a mod ¢ p3=a mod ¢
So the desired result follows immediately since /z is O(x/log? z). O
Theorem 1.52 (Bombieri-Vinogradov). For A > 2 we have
max (g 4(x) — x‘ < x(logz)™4
ac(@/az)* | v (q)

9<Q
with Q = /x (logx) ™8 with B = B(A).

Remark. Note that there are \/z (logz) ™8 terms which sum to something on the order of x (logz)~“. So on average,
the error term is x'/>%¢. This is almost as good as what we get assuming RH, but this result is an average.
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1.5 Sieve Methods
Lemma 1.53 (Selberg’s Inequality). If A is a sequence of reals with \(1) = 1, then

2

> ) < 13 Md)
d|n

d|n

Proof. If n =1 then
> pd)=p(1)=1  and S| =x1)?=1
d|n d|n

Thus the inequality holds. Otherwise, if n # 1,

dud=0 and  0< D Md)
d

dln
Thus the inequality holds. O
Lemma 1.54 (Modular Inversion Formula). If f and g are functions supported on square-free integers with

gm)= Y fla),

a=0 mod n

then

Proof. We have that
pn) D pla)gla)=pn) DY ula) D fO)=pm)d ulin)d_ f(kn).
a=0 mod n a=0 mod n b=0 mod a 7 k
Now if we let m = jk we reindex the sum
pn) > fmn) D u(in) = p*(n) Y f(mn) Y u(m) = p*(n) f(n) = f(n).
m jlm m jlm
O

Theorem 1.55 (The A? Sieve). Let A = (a,,) be a sequence of non-negative numbers with support depending on x,

and let P be a finite set of primes with P =[] ,cpp. For d| P we let

Ag(z) = > an=w(d)z+r(d)
n=0 mod d
where w(d) is a multiplicative function with 0 < w(d) < 1 and |r(d)| < d-w(d) for all d | P. Then, for an arbitrary
choice of 1 < D, we have

SAP) = Y an< % +(DH?  where  H= [0 —wp) "
(n,P)=1 PP
p<D

Proof. Recall that, by convolution, we have

1:((3)_((8)—1: Zn—s Zu(n)n—s — Z/J(d):{l n=1

1<n 1<n din 0 otherwise.
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Thus, by using Lemma [L.53] we have that

- Y =Y 3 <Zan(z ))2

(n,P)=1 n d|(n,P) d|(n,P)

=)D ANd)AMd2) D =3 Mdr) Md2) Ajg, (@)

dy|P da|P n=0 mod [dl,dz] dy|P da|P

where A(1) = 1 and A has some level of support D where A(d) = 0 for all d > D. Now breaking up the A terms

S(A,P) =2 Y Adi) Md2) w([dy, da]) + > Y Mdr) Md2) r([dy, da]) = - Q + E.

dy|P d2|P dy|P d2|P

Now note that (dy,ds) [d1,d2] = dids. So if we let d; = ac and dy = be where ¢ = (dy, dz), then abc = [dy, ds]. Using
this reindexing we have

Q= Z Z Z Aac) A(be) w(abe) = Z Z Z A(ac) w(ab) Z w(d)

¢ ac|P be|lP ac|P bc|P d|(a,b)
(a,b)=1

I
(]
=
&
(]
=
S
(]
(]
>
g
=
g
=3
2
=4
=

d|P c a=0 mod d
b=0 mod d
2
S OICDSCT ) SRRVEIE)
d|P c a=0 mod d

QZ( )y Jﬁd))< > A<a>w<a>> = 3 am) yom)?

m  \d|(m,P)

where (@)
— s —
x(m) = Z w(m/d) and y(m) = ) Z Aa) w(a)
d|(m,P) a=0 mod m

where y(m) also has level of support D where A(d) = 0 for all d > D. Note that, by Lemma y(m) is subject to
the constraint that

Am)w(m) = p(m) Y pla)yla) = pm) Y pla)y(a). (15)

a=0 mod m a<D

a=0 mod m

In the case of m = 1, since A\(1) = 1 we have 1 = w(1) = wu(a) y(a) (here 1 = w(1) comes from the multiplicativity

of w). Now by the method of Lagrange multipliers

T
V(Zaz(m)y(m))—w )A”Q (Zu )

m

Thus, y(a) = (A/2) (u(a)/z(a)). So we have that

1) = Zu(a) y(a) = Z p(a) ( Z ) % <Z —H where  H = Z ﬁ.

a<D a square-free
a<D
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Thus, A = 2/H and y(m) = (1/H)(p(m)/xz(m)). Substituting this into Equation we find the optimal choice of
A(m) is

=

m 2(1
)\(m):;]-(()) a;j ‘;((a)). (16)

a=0 mod m

g

Additionally, with this choice of A(m),

Q=S stmyom* = 5 X L0

Note that

x(m) = Z ild) ZM d)dgp = z(p) = 1—7w(p)

dlimp) wm/d) ~ ) i w(p)

is multiplicative and supported on square-free integers, we have

1 1 —1
H= Y M=H(1+x(p)>:ﬂ(l—w(p))-

a square-free p|P p|P
a<D p<D p<D

And now since z(a)~!

Now, all that remains is to estimate the E term. Returning to Equation and applying the triangle inequality
we have

1 1 1 1 1 1
Mmls 77 o g) 2(a)  H wim) asz:D z(am)

a square-free am square-free
a=0 mod m

am<D a<D
am squarefree a square-free

Noting that the sum on the RHS is exactly H, we have the inequality

Thus,

EED 3D IS TRRATED Db Br s e s

dy|P dz| P LIP P "
d1<D ds<D
Now note that w([dy, dz]) w((d1,d2)) = w(didz), and since 0 < w((dy,dz2)) < 1 we have that w([d1,dz2]) < w(dida).

Thus,
2

dldg’w d1d2 d 2
EY Z (didz) = Zm < (DH)

di|P da|P
dy<D dy<D d<D

which completes the proof. O
Definition 1.56 (Almost Prime). A k-almost prime is a number with at most k prime factors (inclusive).
Lemma 1.57. If n < x has no prime factors p < %/ 1Y then n is a k-almost prime.

Theorem 1.58 (Brun’s Theorem). We have that

Z 1<oo.

p twin prime
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Proof. Let us define a sequence A, = (a; ) from the indicator function

1 n=m(m+2) for some m < x
Qgp = .
0 otherwise.

and let us define the product

PZ:Hp.

p<z

Now, if p < x is a twin prime, then n = p (p + 2) is a 2-almost prime with a, , = 1. Now note that if z = /3 then
if (n, P,) = 1 then n is 2-almost prime by Lemmam Thus,

mo(x) < S(Ag, P,) = Z Qg -

(n,P,)=1
Now note that

Ag(z) = Z zn={n=0modd:n=m(m+2), m <z} =w(d)x+r(d)
n=0 mod d
where w(p) = 1/p and |r(p)| < 1 =p - w(p) when p = 2; likewise, w(p) = 2/p and |r(p)| < 2 = p- w(p) when p # 2.
Thus, we can apply the A? sieve of Theorem to get

x
mo(z) < S(Ag, P.) < E+(DH)2 where H = H(l—w
pIP:
p<D

By choosing D = z we give asymptotics on H,

H=JJa-wp)™=2 [] a-2/p"'~2 [] 0-1/p 2= H(l—l/p) 2~ 2e? log? 2

p| P 3<p<=z 3<p<z p<z

via Merten’s theorem. Thus, we have

ma(z) < S(AL, P.) < LQ + (zlog?2)? < 2?3 logt r <« x2
log” 2 log 33 log”™ x

Now let b, = 1 if n is a twin prime and 0 otherwise. Then we have that

o= ¥ =S ey S Y ()=

p twin primc n<N n<N n<N k<n
p<N

by Abel summation. So applying our sieve estimate we have

7T2(N) 7T2(TL) 1 1 1 1
Sy = + < + < + .
N HSZN n(n+1) " log?N nSZN (n+1)log’n ~ log’ N HSZN nlog®n

In the limit N — oo the leading term vanishes, so Sy behaves however the summation behaves. So we apply the
integral test for convergence, with the substitution v = log x

/°° dx _/O"du_(l)OO 1
2 xzlog’x log 2 U? U/ 1og2 log2”

Thus the sum of the reciprocals of twin primes must converge. O

Theorem 1.59. For any set of §-spaced points b, € R/Z, and a set of complex numbers a,, with n < N we have

2

Z Z an e(byn)| < (6_1 + N) Z |an|2.

r |n<N n<N
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Proof. Too complicated. O
Lemma 1.60 (Fixed ¢ w/ Additive Character). We have that

DD anelan/g)| < (g+N) D lanl’.

a mod q |In<N n<N

Proof. Letting b, = n/q for n mod ¢, we note that these are d-spaced points where 6 = 1/g; so this lemma follows
as a simple corollary of the above. O

Proof. ALTERNATIVE: Note that

2

5= 3 S| = ¥ | S enctam/o)| | X wmel-ansa

a mod q [n<N amod q \m<N n<N

We rearrange the terms:

S = Z Zam@ Z e(a(m —n)/q).

m<N n<N a mod g
By orthogonality we know this inner sum is ¢ if n = m mod ¢ and is 0 otherwise. So we have

2

S0 Y anam=a | Y a <q ¥ m S <@+ M) Y ol

mn<N r mod ¢q n<N r mod ¢q n<N n<N
m=n mod q n=r mod ¢ n=r mod ¢
by Cauchy-Schwarz. O

Lemma 1.61 (Average over ¢ < @ w/ Additive Character). We have that

Z Z Zane(aﬂ/Q) S(Q2+N)Z|an|2.

9<Q@Q a mod q |In<N n<N

Proof. Note that the set of Farey fractions a/q where ¢ < @ and (a,q) = 1 is d-spaced where § = Q2 because,

!/ / !
— 1
a_df_ M‘Z/ZQ—Q,
q g qq qq
So, this lemma follows as a simple corollary of the §-spacing lemma. O

Lemma 1.62 (Fixed ¢ w/ Multiplicative Character). We have that

2

. Z Z anX(n) < (Q+N) Z |an‘2.

@(q) XE€EX4 [n<N n<N

Proof. Note that

2

S = Z Z apx(n)| = Z Z amx(m) anX(n) | = Z G Gy, Z x(m)Xx(n).

XEX4 [n<N x€Xy \m<N n<N m<N n<N XEXq

By orthogonality we then know that

S=0(@) Y.) anmm=9@ Y. | > an

m,n<N r mod ¢q n<N
m=n mod ¢ n=r mod q
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Thus, recalling the additive case in Lemma [1.60

—=8=g 3 | Y | = X |[Y anelan/a)| <@+N) Y lanf

@(q) r mod q n<N a mod q |[n<N n<N

O
Lemma 1.63 (Average over ¢ < (Q w/ Multiplicative Character). We have that
2
Y o 2 | X x| <@+ N) Y fal”
9<Q wla xeX n<N n<N
Proof. Note that
2
S=> 1D anxm)] = > D amx(m) | [ Do@mx(n) | = D Y ama Y x(m)x(n).
xX€Xq [n<N x€Xqy \m<N n<N m<N n<N xX€Xq
Now applying orthogonality relations we have that
2
) 22 amn=wld) Y| > an
m,n<N r mod ¢ n<N
m=n mod ¢ n=r mod q
Recalling the proof of Lemma [1.61} we have that
2
2
q 2
DSl 2 | 2 e =2 > | D awelan/g) (@4 N) D el
g<q ¥\ 4<Q rmodg| n<N 4<Q a mod q |[n<N n<N
n=r mod ¢
O

Theorem 1.64 (Large-Sieve Type Sum). If a,, and b, are sequences defined on m < M and n < N with MN <z
with M, N > x° and the b, satisfy the Seigel- Wielfish condition, then

! —A
g(:;)(g}z?):(l ZZ G bn — 2@ ZZ ambn| <4 z(logx)

mn=a mod ¢ (mn,q)=1

where Q = x'/?(logx)~ 5.

Lemma 1.65 (Vaughn’s Identity). We have that

An) = 3 ulm)log(n/m) — 3757 um)Ale) + 33 alm) A(e)

m|n cm|n cm|n
m<z c<y,m<z c>y, m>z
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2 Modular Forms

2.1 Modular Forms and Cusp Forms with Examples
Definition 2.1 (Slash Operator). For v € GLy(R) we let f|iy(2) = detv*/2 j(v, 2) 7% f(v2).

Definition 2.2 (Modular Form). For I' a subgroup of SL2(Z), a weight k modular form f : C — C on T is a
holomorphic function such that f(z) is bounded as z — ico and satisfies

fz)=j(v.2)" fz)  or equivalently — fliy(2) = f(2)
where v = (2Y) € T with vz = (az +b)/(cz + d) and j(v,z) = cz + d.

Definition 2.3 (Cusp Form). For T' a subgroup of SLa(Z), a weight k cusp form f : C — C on T is a weight k
modular form such that f(yo00) =0 for all v € T and has exponential decay as y — co.

Lemma 2.4 (Equivalent Condition on Cusp Forms). If f is a weight k modular form, then f is a weight k cusp
form if and only if f(co0) = 0.

Proof. (=) Let f be a weight k cusp form. Then f(yoo) =0 for all v = ( ) € I'. By modularity we have that

f(o0) = f(v7 o0) = ji(y !, 7y00)* f(yoc) = 0 -0 = 0.
( <) Now suppose that f is a weight k& modular form such that f(co) = 0. Then for all v = (2Y) € I, by
modularity we have that
f(yo0) = j(7,00)* f(o0) = (a/c)*
Thus, f(yoo) =0 for all v € I" and f is a weight k cusp form. O

Lemma 2.5 (Fourier Expansion of Cusp Forms). If f is a cusp form with Fourier expansion
= Z A e(mz)
0<m
then it must be that ag = 0.

Proof. Suppose that ag # 0, then f(ico) = ag # 0. But by the previous lemma we know this can not be the case, so
it must be that ag = 0. O]

Definition 2.6 (Eisenstein Series). We define the weight k Eisenstein series as
S et
(m,n)#(0,0)

We also have the renormalization

Ei(2) Z ZZmz—i—n

(m,n)=1
Definition 2.7 (A-Function). Let us define A via
Ao Bi-EG
1728

Definition 2.8 (Poincare Series). Let I'o be the subset of T'o(IN) which are upper triangular. We have that

Pur(z)= D, em2hr=) 3" czflzcj\-]jlz

Y€l /To(N) (eN,d)=1
c>0

Remark. Note that Py (z) = Ex(z) on To(1) =T.

Lemma 2.9 (Fourier Expansion of Eisenstein Series). For all k we have that

E —1—720']@1 )

1<m
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Proof. Recall the Weierstrass factorization for sin 7z:

sinmz = mz H(l —z/n)(1+ z/n).

1<n

Taking the logarithm of both sides we have
log(sinmz) = log(nz) + Z log(1 — z/n) +log(1 + z/n).
1<n
Taking the derivative of both sides we have

1 1 1 1
tmz = — = .
oot Z+Z(z—n+z+n) Zz—l—n

1<n ne”

But also note that

1 271
mcotwz = mi (6(2)+ )zm’— =i — 2mi E (dz).
e(z)—1 1-— e( Py
Thus,
E L = i — 2t g (dz)
zZ+n
nez 0<d
(kKD 4 > o mi—2mi Y e(dz) | = —2mi (2mi)* ) " d¥ e(dz)
' (z4+n)ktl  dzk z+n  dzF '
nez nez 0<d 0<d

And so, via algebraic manipulation, we have that

i)k
Z( ! :( 2mi) " dee(dz).

k+1 [
Al n) k!

Now note that

S (mz+n)’“2g(k)+222(mz+n)k2g(k)+2( T )ZZd’“ Le(dmz).

(m,n)#(0,0) 1<mne€Z

Now since oy (n) = 3y, d* we have that

Gu2) =260 +2 (
Dividing through by 2 (k) we have that

27rz
Ek(z)zl—i— Zak 1

Since (—2mi)*/(¢(k)T'(k)) = —2k /B, the result immediately follows. O

Definition 2.10 (Fourier Expansion of A-Function). We define T as the coefficients of the Fourier expansion of A:

A(z) =Y 7(m)e(mz).

1<m
Note that since A is a weight 12 cusp form, we have that 7(0) = 0.

Lemma 2.11 (Fourier Expansion of Poincare Series). For m > 0 we have that

(k—1)/2 N At~ )
Pm,k(z) = Z 26m,n + 27m'k (%) Z M kal (W> eZ‘n'znz.

cN cN
0<n 1<c¢
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Proof. Note that if

_ 2 ane27rznz

0<n
then we have that

14y
ap, = / P i(2) e(—nz) dz.
0+iy

Substituting our definition of P,, () we have that
—Hy
Z / 7\;%]\[ 22) e(—nz)dz.
(eN,d)=1" 0+ (eNz + d)f
c>0
Now focusing on the ¢ = 0 terms we have

14y
/ e(mz) e(—nz) dz = 20, p-
0

d=+1" 0+

Thus, breaking our remaining sum over d into equivalence classes we have

Y e(myen aseniz)
1<cde(Z/eNTZ)x lez ¥ 0+ (eN(z +1) +d)

Now noting that a = d~! = (d + ¢NI)~! mod cN, we have that

az+ (a(d+¢eNl) —1)/(cN) _ a(z+1)+ (ad — 1)/(cN)
¢Nz+ (d+ eNl) eN(z+1)+d

Ye,d+eNIZ = =Yen,a(z +1).

So applying this and the substitution z — z — [ we have

IH+1+iy e(myen,az)
=9 N\ lelN.am)
ap =20 + E E E /l , (N2 + d)f e(—nz)dz

1<c de(Z/eNZ)* lez ” 1+

et e m%NdZ)

1<cde(Z/ecNZ)* °°+w
Now note that
az+(ad—1)/(cN) _ a 1
’YCN,dZ - = — — —;
cNz+d cN  (cN)(eNz+d)
thus,
oco+1iy ma m
_2§mn+ / CNZ"‘d)_ke ( — ) 6(—n2) dz.
1Z<c dE(Z/g\[Z co+iy cN (¢N)(eNz+d)

Now substituting z — z — d/(cN) we have

ootiy ma m nd
- > > AL - 22 a
=20 + / (cNz)~ <c @ )22> e( nz—l—c ) z

1<c de(z/eNZ)* ¥~y

2t S (M) [ vyt (< e

1<c d€e(Z/eNT)x ooty

Now note the Kloosterman sum in the formula, and making the substitution z — —/m/n (z/c) we have

k/2 ootiy
Ap = 26m,n + ( ) ZS m n, cN / Z_ke (\/m(z—’_z_l)) dz.

—oo+iy cN

This last integeral can be massaged into the appropriate J-Bessel function (and scaling factors) with some manipu-
lation. O
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2.2 The Space of M, and S,

Theorem 2.12 (Valence Formula). Let v,(f) be the order of vanishing a non-zero function f at a point z = p. Then
if f is a weight k modular form we have that

2€H/SLa(Z)
where w, =2 if z =1, w, = 3 if z = (g, and w, = 1 otherwise.

Proof. (Sketch) Apply the argument principle to the contour going around the fundamental domain with cutouts
around the points at 7, (g, (3, and oco. O

Lemma 2.13 (Non-Vanishing of A). We have that A is non-vanishing on H except for a simple zero at ico.
Proof. Note that A is of weight 12 and A(ico) = 0 via the Fourier expansion coming from

1728

Thus we know that v;0,(A) > 1 and via the Valence formula we have

z€(H/SL2(Z))\{ico}

Since A is holomorphic, we know that v,(A) > 0 for all z; thus it must be the case that v;c(A) =1 and v, (A) =0
for all z # ico as desired. O

Lemma 2.14 (Preliminary to Characterizing the Space My I). For k < 0 there are no modular forms of weight k.

Proof. Suppose that f is a modular form of weight £ < 0. Then by the valence formula we know that there exists
z € H/SLy(Z) such that v, (f) < 0. But this would imply f is non-holomorphic, contradiction. O

Lemma 2.15 (Preliminary to Characterizing the Space My II). We have that M = A - My_12 ® C- Ek.

Proof. Let f € My, and let ag = f(ioco). Now note that f — agEj has a zero at ioco; thus, since A is non-vanishing on
H and has a simple zero at ico (per Lemma[2.13), we have that (f — aoEx)/A = g is a weight k — 12 modular form.
Thus,

f =A- g+ apE}

and the result immediately follows. O
Theorem 2.16 (Characterization of the Space My). We have the following results on the space Mj,.

o Ifk is odd then My = 0.

o [f k=0 then M; =C.

o Ifk =2, then My =0.

o [f4 <k <10 is even, then M = C - Ej.

o I[fk>12, then My, = A - My_1o @ C- E}.
Proof. We cover each of the six cases above:

e Note that if there exists a non-zero modular form f of odd weight k& on SLy(Z), then for v = —I5 we have that

f(2)=f(r2) = ()" f(z) = = f(2).
This is a contradiction because it implies that f vanishes everywhere.

o If k =0 then f(yz) = f(z) for all v € T". For fixed z, since the set {vz : v € I'} has accumulation points, we
know that f(z) is constant by the identity theorem.
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e If k£ = 2 then there is no integral solution to the valence formula because any vanishing point that might exist
contributes at least +1/3. Thus M3 = 0.

o If 4 <k <10 is even, then My = A- My_12 & C- E}, with k —12 < 0. So by Lemma [2.14] M;, = C - Ej.

e This is exactly Lemma [2.15

O
Corollary 2.17 (Dimension of My). For k > 0, we have that
k
- +1 k#2mod12
dim(c Mk = k
12 k =2mod 12
Proof. Trivial. It immediately follows via downwards induction. O

Theorem 2.18 (E4 and Eg Generate M). We have M = C[Ey, Eg] where M is the space of modular forms.

Proof. Trivially, My, Ma, My, Mg C C[E4, Eg] by Theorem Now note that E7 is a weight 8 modular form,
so by Theorem we know that E? = ¢ Eg for some non-zero ¢ € C. Thus, Mg C C[E,, Fg]. Likewise, since
E,Eg is a weight 10 modular form, by Theorem we know that F4Fg = ¢ Fyg for some non-zero ¢ € C. Thus,
Mo C C[Ey, Eg).

Now if we suppose that M), C C[Ey, Eg), let us show that My 12 C C[E4, Fg]. Note there exists a, b such that
E$E} is a weight k + 12 modular form, so by Theorem we know that

E{ES =A-f+c- By
for some ¢ € C and f € My. Note that ¢ # 0 since E¢EE & Sk112; so, since f € My, C C[E4, Eg] we know that
Epp12 =c ' (B{ES — A - f)

is in (C[E4, Eg] Since, Mk+12 =A- Mk (&) C- Ek+12 with Mk Q C[E4, EG} and Ek+12 S (C[E47 EG], we know that
My.+12 C C[E4, Fg] as desired. Now applying induction we have that M C C[Ey, Eg] for all even k. Since

M:UM%
k

as per Theorem we know that M C C[Ey, Eg]. The reverse inclusion is trivial and the result follows. O
Theorem 2.19 (Characterization of the Space Sy). We have that Sy = A - Mg_12.

Proof. Let m: My_12 — S via f — A - f. Note that if g € Sy then g/A € My_15 because A is non-vanishing on
H and v;00(g) > 1 with v;00(A) = 1. So 7 is surjective. Additionally, note that if A - f = 0 then f = 0 since A is
non-vanishing on H. So 7 is injective.

Thus, 7 is bijective and the result immediately follows. O

Corollary 2.20 (Dimension of Si). For k < 12 we have that dim¢ Sk = 0. Otherwise, dim¢ Sy, = dime My, — 1.

Proof. For k < 12 we know that S, = A - My_1» with k — 12 < 0 via Theorem and we know that My_12 is
empty via Lemma [2.14} thus, Sy is empty for k£ < 12. So dim¢ Sy, = 0.

For £ > 12 we know that S, = A - My_1» with £k — 12 > 0 via Theorem and we know that M, =
A My_15 ® C- E} via Lemma Thus, dim¢ Sy, = dime My _12 and dime My, = dimg Mjy,_12 + 1, by algebraic
manipulation the result immediately follows. O

Lemma 2.21 (Arithmetic Identity on o7 from E} = Eg). We have that

or7(m) = o3(m) + 120 Z o3(n)oz(m —n).
0<n<m
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Proof. From Corollary we know that dime Mg = 1. Thus, E = Eg up to constant multiple. Of course, Lemma
gives us that the Fourier expansion of E4 and Eg both have constant term 1. So, Ef = Fjy exactly.
From Lemma we know that

8 16
E,=1- B, Z os(m) e(mz) and Eg=1-— By Z o7(m)e(mz).
1<m 1<m
Now we compute
2 2
Eil=11- s Z ozs(m)e(mz) | =1- 16 Z os(m)e(mz) + o Z os(m) e(mz)
B4 1<m B4 1<m BZ 1<m

Now we use convolution to square the summation on the right

E?=1+ Z (—;i os(m) + g; Z o3(n)oz(m — n)) e(mz).
0

1<m <n<m
Now we match Fourier coefficients to get

16 16 64
——o7(m) = ——o3(m) + il
40

Z o3(n)oz(m —mn).

<n<m

Recalling that By = —1/30 and Bs = —1/30 we get

o7(m) = o3(m) + 120 Z o3(n)oz(m —n).

0<n<m

Lemma 2.22 (Arithmetic Identity on o9 from EjEs = E19). We have that

10 21 5040
00(m) = =7 o3(m) + 37 o5(m) + - > os(n)os(m—n).
0<n<m

Proof. From Corollary we know that dimc Myg = 1. Thus, E4Eg = FE19 up to constant multiple. Of course,
Lemma [2.9| gives us that the Fourier expansion of F4, Fg, and Fq all have constant term 1. So E4Fg = E1¢ exactly.
From Lemma 2.9 we know that

8

Ey=1- B, Z o3(m) e(mz) and Es=1- B, Z o5(m) e(mz).
1<m 1<m
Now we compute
BBy = (1= 2 Y asmye(ma) | (1= 5 3 ostm)e(m)
Q4 g = B4 oz(m)e(mz B6 os(m)e(mz
1<m 1<m
-2 Z os3(m)e(mz) — 12 Z os(m)e(mz) + %0 Z o3(m) e(mz) Z os(m) e(mz)
- B4 1<m ’ B6 1<m ’ B4BG 1<m ’ 1<m ’

Now we use convolution to evaluate the product of sums on the right

Esbg =1+ Z (‘54 o3(m) — g o5(m) + % Z o3(n) os(m — n)) e(mz).

BB
<m 6 456

Now we match Fourier coeflicients to get

20 8 12 96
7370'9(771):770'3(771)77 —_—
10
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Recalling that By = —1/30, Bg = 1/42, and By = 5/66 we get
10 21 5040

ag(m) = 11 os(m) + 11 os(m) + ETE 0<nz<m03(n) os(m —n).

Lemma 2.23 (Arithmetic Identity on 013 from EyE19 = E14). We have that
g13(m) = —1003(m) + 11 og(m) + 2640 Y o3(n) oo(m — n).
0<n<m

Proof. From Corollary we know that dime M4 = 1. Thus, E4F19 = F14 up to constant multiple. Of course,
Lemma [2.9| gives us that the Fourier expansion of E4, F1g, and Fy4 all have constant term 1. So E4E19 = Ey4

exactly.
From Lemma 2.9 we know that
E,=1- 8 Z o3(m) e(mz) and Eyp=1- 20 Z og(m) e(mz)
! By =, ’ v B (=, ’ .
Now we compute
EsFy = kiza(m)e(mz) 1—£20(m)e(mz)
e B4 1<m ’ BlO 1<m ’
8 20 160
=1-— o3(m)e(mz) — — og9(m) e(mz) + o3(m)e(mz og(m) e(mz
7, L eslmyelm) = g 3 outm)efmz) + o | 3 oatm)e(ma) | | 3 o) e(m)

Now we use convolution to evaluate the product of sums on the right

EyEpo=1+ Z (—384 oz(m) — ;—?O og(m) + Bi(;)lo Z o3(n) og(m — n)) e(mz).
0

1<m
Now we match Fourier coefficients to get

28 8 20 160
~ B o13(m) = B o3(m) — B—wag(m) + BiBro , Z os(n) og(m —n).

Recalling that By = —1/30, B1g = 5/66, and By4 = 7/6 we get

o13(m) = —1003(m) + 11og(m) + 2640 Y o3(n) oo(m — n).

o<n<m

Lemma 2.24 (Arithmetic Identity on o3 from EgEs = E14). We have that
o13(m) = 21 05(m) — 20 07(m) + 10080 Y o5(n) or(m — n).
0<n<m

Proof. From Corollary we know that dimc M4 = 1. Thus EgEs = E14 up to constant multiple. Of course,
Lemma [2.9] gives us that the Fourier expansion of Eg, Es, and Ej4 all have constant term 1. So EgEg = Ey4 exactly.
From Lemma 2.9 we know that

37



Now we compute

12 1
E¢Eg=|1- B o5(m) e(mz) 1-— B—i Z o7(m) e(mz)
1<m 1<m
12 1 192
=1- o os(m)e(mz) — B—6 Z o7(m) e(mz) + BGQBS Z os(m) e(mz) Z o7(m)e(mz)
1<m 1<m 1<m 1<m
Now we use the convolution to evaluate the product of sums on the right
12 1 192
EsEg =1+ Z (BG 05(m) - §2 07(m) + BGQBS Z 05(n) 0'7(m - n)) e(mz)
1<m 0<n<m

Now we match Fourier coefficients to get

28 12 16 192
,?Malg(m) =B os5(m) — Be or(m) + Bobs Z o5(n)or(m —n).

<n<m

Recalling that Bg = 1/42, Bg = —1/30, and B4 = 7/6 we get

o13(m) = 21 o5(m) — 20 o7(m) + 10080 Z os(n)oz(m —n).

o<n<m

Lemma 2.25 (Computing 7 from E2 — Ej5 = aA). We have that

65 691 691
) = g ou(m) + = o5(m) — == > os(n)os(m—n).
0<n<m
Proof. Recall from Lemma [2.16] that M2 = A - My & C - Ej5 and My = C. Thus, M1 = A-C @ C- Ey5. Thus,
since E3 is a weight 12 modular form, we have that E2 = a A + b E15 for some a, b € C. Of course, Lemma [2.9| gives
us that the Fourier expansion of Fg and F12 have constant term 1, and we know that the constant term of a cusp
form is 0. Thus, b = 1 and we have that Eg — Eis =aA.
From Lemma 2.9 we know that

T(m

12 24
Eg=1—— Z os(m) e(mz) and Ep=1—— o11(m) e(mz).
B6 1<m B12 1<m
Now we compute
2 2
12 24 144
EZ=|1- B, 2 os(m)e(mz) | =1- B 2 os5(m) e(mz) + B2 1<Z os(m) e(mz)

E:=1+ Z (Zi os(m) + 1;1721 Z o5(n) 05(mn)> e(mz).

6 0<n<m

E} - FEp= Z <;1 o11(m) — %Zz os(m) + gi;l Z os(n) os(m — n)) e(mz).

6 o<n<m

Now we match the m = 1 Fourier coefficient to get

24 24 144 24 24
=ar(l) = ——on(l) = = os(1)+ —5 > l—n)=— _ 22
a aT( ) B]2 011( ) B6 05( ) + Bg o5 05 (n) 05( n) 312 BG
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Now we match Fourier coeflicients to get

24 24 24 24 144
(35~ 50) 7 = gy onm) — Zrastm) + 53 3~ osn)ostm ).

6 0<n<m
Recalling that Bg = 1/42 and By = —691/2730 we get

65 691 691

T(m) = 70’11(77’1) + 70'5(77’1) — T Z 0'5(77,) 05(m — TL)

0<n<m
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2.3 L-Functions Associated with Cusp Forms
Definition 2.26 (L-Functions Associated with Cusp Forms). Given a cusp form f € Sy with Fourier expansion
f(Z) — Z aneQﬂ-inz
1<n

we define the L-function associated with this modular form as L(f,s) where

QA

L(f,s) = —.

s
1<n

Lemma 2.27 (Hecke Bound for Cusp Forms). Given a cusp form f € Sy with Fourier expansion

f(2> _ Z aneQﬂ-inz

1<n

we have that |a,| < n*/2,

Proof. Since f € S; we know that f has exponential decay as y — oo and that f is [-periodic. Thus the function
y*/2|f| is bounded on H, and we have that |f| < y~*/2.
Noting that

f(Z) = Z aneQﬂ'inz and m — Z@e—%rinz

1<n 1<n

by Parseval’s identity we know that
1
Z |an|2e—4ﬂ'ny — Z (ane%rinz) (@e—QwinE) _ / |f<Z)|2 dz < y—k’.
nez nez 0

So we have that
2 2 — 2 - —
§ : |an| < e47rNy § : |an| e 4ny < e47rNy§ |an| e AdTny <Ly k€47rNy
n<N n<N nez

for all y > 0. Choosing y = 1/N we have that

|aN|2 < Z ‘an|2 < (1/N)—ke47rN(1/N) — e47rNk’ < Nk
n<N

Taking the square root of both sides yields the desired result. O
Lemma 2.28. If f € S}, then We have that L(f,s) is absolutely convergent for o > 1+ k/2.

Proof. Tf ¢ > 1+ k/2 then we know that |a, /n°| < n~(“%/2) with o — k/2 > 1 by the Hecke bound. Thus we have
absolute convergence of L(f,s) and |L(f,s)| < ((¢ — k/2) by the triangle inequality. O

Theorem 2.29 (Functional Equation for L-Functions Associated with Cusp Forms). For f € Sk, we can extend
L(f,s) to an entire function, and if

A(fy8) = M(f(it))(s) = (2m)"* T'(s) L(f, 5)

then we have that

A(f,S) :ZkA(ka_S)
Proof. Recall that for all o > 0, T'(s) is defined as

I'(s) :/ e tts T dt.
0

Now if we do the substitution ¢ = 2mnu, then after some manipulation we have that

(2mn)~°T(s) = / e~ 2mmigs=1 gy,
0
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Now if we take the sum over all n > 1 with the coefficients a,,.

(27T)_S L(f7 5) F(S) = Z [e7% (271'77,) ST Z an/ —27T7’Ltts 1 dt.

1<n 1<n

Now note that, using Hecke’s bound and the substitution v = 27wnt we have

Z/ —27rntts—1‘ dt < Z nk/2 /OC e—27rntt<7—1 dt

1<n 1<n 0
o3l k/2)/ omtigo—1 gy — S0 = k/2)T(o)
1<n (QW)U

For o > 1+ k/2 we know this converges. So by Fubini-Tonelli, when o > 1 4 k/2, we can interchange the sum and
the integral as needed.

(27’(’) Zan/ —27Tntts 1dt / Zan —2mnt 5= 1dt / f Zt 5= 1dt (f( ))( )
1<n 1<n
Now note that

@ﬂﬂLUﬁﬂWﬂZAmeH“”ﬁ=%;ﬂnﬂ*%ﬁ+[wfwn*%w

Now using the substitution ¢ = 1/u on the first integral we have

! : s—1 _ ' (_1> —s—1 _ sk > . k—s—1
/0 fEt)t* = dt = /O<J f o) du =1 /1 fluw)u du.

(2m)~° L(f,s) T( —z/ fztt’”ldt+/ flit) et at.

Note that this integral is entire since f(it) has exponential decay as t — oo because f is a cusp form. Thus, we can
extend L(f,s) to an entire function. Returning to our line of thought, by replacing s with & — s and multiplying
through by i* we have

So we have that

oo oo
i* 2m) " ) L(f,k —s)D(k —s) = i%/ f(it) t“”_ldt+ik/ f(it)tF=stdt.
1 1
We know that k& must be even since f is a cusp form, thus i?* = 1. So we have that

A(fvs):(Q ) () (f7 )—Z ( ) (e é)F( ) (f7 _S):ikA(.ﬂk_S)
as desired. O]
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2.4 Hecke Operators and the Petersson Inner Product

Lemma 2.30 (Double Coset Motivation Hecke Operators). We have that
ab 0

(€ M@ ety = N ) = L] T (5 o) o= L roa

where AN = {(8 g) cad =n,bmod d, (a,N) = 1}. This follows naturally by considering the Smith normal form

and Hermite form of matrices.

Definition 2.31 (Hecke Operators). We define the Hecke operators acting on function f € My(To(N)) as

(Tof)(z) =270 3" flid(2)

SeAN
Remark. One can think of Hecke operators as an averaging operator.
Lemma 2.32 (Hecke Operators as Indexed Sum). The Hecke operators act on functions f € My(To(N)) as

@) = 3 3 A ((g Z)z)

ad=n b mod d

Proof. Trivial. O

Lemma 2.33 (Hecke Operators on Fourier Series). If f € My(To(N)) has Fourier expansion

= Z ¢, €272 then (Tf)(z) = Z Z XY (d) dF 7 a2 €27

0<m 0<m d|(m,n)

Proof. By the previous lemma we have that

(T f _ nk 1 Z Z XO d—k Z cmeQTrimaz/deQWimb/d

ad=nb mod d 0<m
27rzmaz/d 1
k 1 2mimb/d
XO Cm, h—1 g e .
0<m ad=n b mod d

Now note that 1
2 Z e2mimb/d _ if d | m, and is 0 otherwise.

b mod d

Thus, noting that a = n/d we now have

k 1 6271—”"(12/(1 1 27imb/d
(T f) (= Z Z XO Cm k—1 d Z €

0<m ad=n b mod d
k 27szaz/d k 27'mmnz/d2
1 1
S e T Y S e,
0<m ad=n 0<m d|(m,n)

dlm
Since d | (m,n) we know that d | m and thus there exists b such that bd = m for all d. Using this we have

27rzmnz/d2 2mbnz/d

(Tof)(2) = n*~ 12 Z Xo (n/d)c k= 122)(0 (n/d) cos ———

0<m d|(m,n) 0<b d|n

Likewise for d | n we know there exists a such that ad = n for all d. Using this we have

27rzlmz/d

(T f _ nk 1 Z Z b Tl/d Chd ———— Z Z XO Cbn/a 27riabz.

0<b d|n 0<b aln
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Now re-indexing with ab = m we have

Z ZXO ey €T = Z Z X0 (@) A" e gz €27

0<b aln 0<m al(m,n)
exactly as desired. O
Lemma 2.34 (Hecke Operators are Multiplicative). For all (m,n) = 1, we have that Ty = Ti, T,

Proof. By the above lemma we know that

—1 2miaz
mnf E E XO Camn/d2€ .

0<a d|(a,mn)

Similarly, we have that
z) = Z Z X (d) d* ey, g2 ™7 = Zc’ 2mibz where ¢, = Z X0 (d) d* ey .
0<b d’|(b,n) 0<b d’|(b,n)
Thus, applying T}, to this new Fourier expansion gives
(T T, f Z Z XO dk_lcgm/d2€2ﬂ-iaz = Z Z Z XO (dd/) (dd/) Camn/(dd/)Qe az

0<ad|(a,m) 0<ad|(a,m) d’'|(am/d?n)

Now note that d’' | am/d?, thus d’ | am. However, since (m,n) = 1 and d’ | n, we know that d’ { m; thus, d | a. So
this can be re-indexed with d’ | (a,n) instead.

(TnTof)(2) =Y > > X' dd) (dd) T Camn(aary2 €™

0<ad|(a,m) d’|(am/d?,n)

_Z Z Z XO dd/ dd/) Camn/(dd’)262 miaz

0<ad|(a,m) d’'|(a,n)

Now since d | a and d’ | n, we have that dd' | an. Likewise, since d | m and d’ | a, we have that dd’ | am. Now
since (m,n) = 1, we know there exists « and y such that xm + yn = 1. So, we have that dd’ | x(am) + y(an) with
xz(am) + y(an) = a(xm + yn) = a; thus, dd’' | a. Trivially we have that dd’ | mn also. So this can be re-indexed by
sending dd’' — d where d | (a, mn) instead.

(TnTof)(2) =" > > X0 (dd) (dd') " camn(aary2€*™**

0<ad|(a,m) d’'|(a,n)

= Z Z XU _1camn/d26 miaz (Tmnf>(2)

0<ad|(a,mn)
as desired. O

Corollary 2.35 (Normalized Eigenforms of Hecke Operators Have Multiplicative Fourier Coefficients). If f €
Sk(To(N)) has Fourier expansion
Z) — Z cm€27rimz

1<m
with ¢; = 1 and there exists A, such that T,,f = Apf for all n; then, cpp = cmcy for all (myn) = 1.

Proof. Suppose that f € My has A\, such that T;,f = A\, f for all n. Noting that

Z) — Z Z Xé\f(d) dk—lcmn/dQGQﬂ'imz

0<m d|(m,n)
and matching the m = 1 Fourier coefficients, we have ¢, = A, for all n. Thus, for (m,n) = 1 we have

dividing through by f completes the proof. O
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Lemma 2.36 (Hecke Operator Composition Identity). We have that
Tan = Z Xév(d) dk_l Tmn/d2
d|(m,n)
for all m and n.

Proof. Suppose that this identity holds for m and n prime powers with the same base. Now let p and ¢ be distinct
primes and note

(r* ") = (¢",p°) = (%, ¢") =1
— Tpaqupch = TpaTquchqd = TpaTqbchqd = Tpancquqd = Tpanchqud.

Thus,

Tyogp Tpeqs = (Tpo T TpTya) = | > X (d) d* T o S X0 @) dF T T pga e
d|(p.p°) d’|(q%,q%)
Z Z XO dd/ dd/)k 1T ap /d2 qbqd/d’?-

d|(p®,p©) d’|(¢*,q?)

But now note that (pp°/d?, ¢®q%/d'?) = 1, thus
Tpaqupch = Z Z Xé\,(dd/) (dd/)kilTpapc/(p b d/d/2 = Z Z XO dd/ dd/) qbpch/(dd’)z-
d|(p*,p©) d’|(q®,q¢) |(p*.p©) d’'|(q",q%)
Now we can re-index by sending dd’ + d with d | (p®q®, p°q?).
TpogprTpege =Y Y. x0(dd) (dd) " ' Tpagrpeqajaane = > x0 (d)d" " Tpagopeqayae.
dl(p*,p°) d’|(q®,q?) d|(p=q®,p°q?)

Inductively, and applying the fundamental theorem of arithmetic, we have that this identity then holds for all pairs
of integers.
Thus,we need to prove this identity holds for prime powers with the same base.

We first prove the base case, T,Tpn = Tpn+1 + x5 (p) pk_lTpnfl. Note that

Z Z ey jaee®™ 0 = Z ¢} e2mibz where e, = Z X0 (d) d" L eppn e
0<b d’|(b,p™) 0<b d|(b,p™)
Thus, applying 7}, to this new Fourier expansion gives
(LT £)(2) =Y > xo (@) d e, ™ =>"3" > x{(dd) (dd')* " capmsr j(aary2 €77
0<ad(a,p) 0<ad|(a,p) d'|(ap/d?,p™)
Now note that we get a d = 1 term from every a, and a d = p term from every a which is a multiple of p; thus,

(TT f Z Z XO d/ d/k apn+1/d/2627riaz

0<ad’|(ap,p™)

_|_Z Z XO pd/ pd/) Capn/dlze%riapz.

0<ad’|(a,p")

Focusing on the first double sum and sending d’ — pd we have

Z Z d/ d/k 1 ap"+1/d’2627riaz

0<ad'|(ap,p™)

=@ Y () d a1 a2 ™ = X (p) PPN (T £)(2).

0<ad|(apm~1)
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Focusing on the second double sum and sending pa — a and pd’ — d we have

Do D xo d) (pd)* eapn jane®

0<ad|(a,p™)

= Z Z Xév (d) dk_lcap”L+1/d2 CE (Tp7L+1f) (Z)

0<ad|(a,p™tt)

Thus T, Tpr = Tynts + X8 () p* "1 T,n-1 as desired.

Now we will proceed via strong induction. We need to show that
Tpm+1 Tpn = Z Xév(d) dk_lTpm+1pn/d2
d|(pm+1,pm)
assuming it holds for all lower cases. WLOG, suppose that m < n. Now, note that
LT Ton =Ty Y X0 () d* Tympnyaz = > X0(d) d¥ T Ty 2
d|(p™,p™) d|(p™,p™)

= D @& Tymespnyae +x0 (0) 2" Tyme1pn ja2)
d|(p™,p™)

= Z X(])V(d) dk_lT’pm‘Hp"/d2 + Z X(])V(pd) (pd)k_lTpm_lp"/d2'
d|(p™,p™) d|(p™,p™)

Extracting the d = 1 term from the first sum we have

Tprm Tpn = Z Xév (d) dkilTpm+1pn/d2 + Z Xév (pd) (pd)kilTpmflpn/dz

dl(p™,p™) dl(p™.p™)
= Tym+1pn + Xo (p) P Z o (d) dkflTpm—lpn/ﬁ + Z Xo (pd) (pd)kilTpmrflpn/dz
dl(pm™=*,p") dal(p™,p™)
= Tpmt1pn + o (p) pk_lTpm—lTpn + Z & (pd) (pd)k_lTpmflpn/dZ.
d|(p™ ,p™)

Thus,
(Tp Ty — X0 () P*  Tym1) Ty = Tysryn + > X0 (pd) (pd) ¥ L1 2
dl(p™,pm)

= TpneiTpn = Y X0 (d) @ Tymsrpn e,
d|(p+1,pm)

Thus the proof is complete.

Corollary 2.37 (Hecke Operators are Commutative). For all m and n we have that T,,T,, = T, Ty, .
Proof. Since the RHS in the previous identity is the same if m and n swap, commutativity immediately follows. [

Lemma 2.38 (Hecke Operators Preserve My (I'o(N)) and S(To(N))). We have that T,, : My (To(N)) = Mp(To(N))
and Tp, + Sp(Lo(N)) = S(Lo(N)).

Proof. For v € Ty(N) note that
(Tof)lky =nF270 7 fladley =n™271 Y fledy.
seAN seAN

Now note that AY = To(N) ALY = ANT((N). So there exists 7/ € To(N) and &' € AY such that éy = /8’ and
indeed this map & + &’ forms a bijection across elements of AY. Thus,

(Tuf)ly =020 37 fldy =n*270 37 /s’ =270 Y fle/ |56

seAN s'eaN s'eAN
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So by the modularity of f we have that
(Tu )y =nF/270 > /50 = 0270 S flud’ =T f.
seAlN seAlN
Thus T, f is modular and so T, : My (To(N)) — M (To(N)).
Now if f € Sk(To(N)) then if we let
(Tnf)(Z) _ Z Z Xé\f(d) dkflcmn/ope%rimz _ Z c/m627rimz
0<m d|(m,n) 0<m

then we have that

ch = Z & (d) d*Leo.
d|(0,n)

But since f € S we know that ¢y = 0; thus, ¢j = 0 and we have that f € Si(T'o(V)) also. O
Corollary 2.39 (7 is Multiplicative). For all (m,n) =1 we have that 7(mn) = 7(m) 7(n).

Proof. Since S12 = A-C and T}, : S12 — S12, we know there exists A, such that T,,A = A\, A for all n. Thus A is
an eigenform of the Hecke operators and we have that 7(mn) = 7(m) 7(n) for all (m,n) = 1. O

Definition 2.40 (Petersson Inner Product). For modular forms f, g € Mi(To(N)) we define the Petersson inner
product

(. 9) = / F(2) 9@ o2 de dy
To(N)/H

where To(N)/H is the fundamental domain of H under the action of To(N).

Lemma 2.41 (Poincare Series and the Petersson Inner Product). If f € My(To(N)) we have that

Lk-1) »
Pop) = —
<f7 m,k> (47Tm)k_l f(m)
where f is the Fourier transform of f.
Proof. Note that
————dzxdy
N v OISR oI
FolN)/# YEToo /To(N) Y
- dx dy
= > [ e e S
€L o /To(N) T ToN) /7 Y

Now since our measure is I'g(N) invariant we make a substitution on the integral

_ _ - dx dy
= > I e s FCR DT COR
Y€ /To(N) “ 70
Now doing some quick calculations we have that
1.\k y"* 1 \—k 1 _\k
Im(y™"2)" = W and  j(y,y2) =00y, 2)N
thus, using the modularity of f we have that
i . —————dzd
(. Prs) = / i DM () IO T 2 em)
Ler o vy YT /3 15(v 7, 2)) Y
dx d dx d
- > P IEEm S = [y () (o) elimy) .
7€l /To(N) Y(To(N)/H) Y Poo/H Y
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But now note that the action of 'y, on H is translation by some integer amount in the real component. Thus,

<f,Pm,k>=/o y"* e(imy) / f(z dx;ly

Now we recall the Fourier expansion of f,

dxd
(f, Pr.k) Zan/ yelmyﬂny)/ e(nz —ma) =57

2
0<n Yy

> . . dy g _ rk-1) ,
— 577 k 29 k—2 4Ttmy duy =
> an m/o y* e(imy + iny) )2 am/o v e Y= Gyt f(m),

0<n

exactly as desired. O
Theorem 2.42 (Poincare Series Span the Space S,(I'o(V))). We have that S(To(N)) = Span{ Py : 1 < m}.

Proof. Let S;.(To(N)) = Span{P,, 1 : 1 < m}. Now if we suppose that f is in the orthogonal complement of

S, (Lo(N)), then (f, Py k) = 0 for all 1 < m. Thus, f(m) = 0 for all 1 < m by the above. Thus f = 0, and
Se(To(N)) = S,.(To(N)) as desired. O

Lemma 2.43 (Hecke Operator and Poincare Series Symmetry Lemma I). We have that
Xév(m) mk_lTanJc = XJOV(n) nk_lePmk-
Proof. Note that

A (M) m* N (TP i) (2) = X (m) ) 30 30 3 xng—ke(m(g g))

ad=nbmod d yel+ /To(N)

S Y Y Y @ittt (m (5 0)2)

ad=nbmod dv€Tl » /To(N)

Sty Y A/ (; > e(mb/cn).

ad=n v€l /To(N) (’Y Z) b mod d

Now note that 1
p Z e(mb/d) if d | m, and is 0 otherwise.
b mod d

Thus, noting that a = n/d we now have

N ma)elmavyz
)N P ) () = ) YDy Al elmayz/d) (; > e(mb/d))

ad=n vyl /To(N)

N ma)e(mayz
_ (mn)k—l Z Z X0 ( 1) E Y /d)

ad=n y€l'w /To(N)
dlm

sy demdemme/d)

d|(m,n) y€ls /T (N)
This expression is symmetric under (m,n) — (n,m); so we have that
X (m)m T, P = X () n* 1 T, P
as desired. O

Lemma 2.44 (Hecke Operator and Poincare Series Symmetry Lemma II). For f € M (To(N)) we have that

71<Tnf7 ]Dm7 >—n < T f, nk:>
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Proof. Note that
Tnf = Z Z Xév(d) dkilcam/d2 e and T.f= Z Z Xg)v(d) dkilCcm/(F ez,
0<ad|(a,m) 0<a d|(a,n)

—_—

Thus we immediately have that (T, f)(n) = (T, f)(m). Thus from our previous lemma,

(4mn)k—t —— — (4mm)F—1
mJydnk) 77 4N — T, = (T, = (T, 7P —_—.
<T zf P, ,k> F(k’—l) ( mf)(n) ( nf)(m) < nf m,k> F(k’—l)
Removing the scalar factors from both sides completes our proof. O

Theorem 2.45 (Hecke Operators are Self-Adjoint w.r.t Petersson Inner Product on Si). For alln and f,g € Sy we
have that <Tnfa g> = <fa Tng>'

Proof. Since f,g € Sk we know that N = 1 and so
m* I, P = X8 (m) mF T, Pk = X0 () nF T T P = 0P T, P .

Thus we have that

n\ k-1 n\ k—1
<TnPr,ka Ps,k> = (g) <T8P'r',k7 Pn,k> = (;) <T7'Ps,k:7 Pn,k> = <TnPs,k:7 P’r‘,k> = <P7',k:7 TnPs,k>-

But now since the Fourier coefficients of P, and P are real, we know that
<TnPr,ka Ps,k> = <Pr,k; TnPs,k> = <Pr,k; TnPs,k>-
Thus, for all n, T, is self adjoint w.r.t the Petersson inner product. O

Lemma 2.46 (Spectral Theorem). If T,T' : V — V are commuting complex valued linear operations which satisfy
(Tv,v") = (v, TV") and (T"v,v") = (v, T"V") for all v,v" € V; then there exists a simultaneous eigenbasis of T and T".

Proof. Since T has a characteristic polynomial, we know there exists at least one eigenvector v # 0 such that Tv = \v
with A #£ 0. Now if v # 0 is an arbitrary eigenvector with associated eigenvalue A # 0, then

Mv,v) = (Tv,v) = (v, Tv) = Mv,v) = 0= (A— \){v,v).

Since v # 0, we know that (v,v) # 0; thus, A € R. Now if v,v’ # 0 are arbitrary eigenvectors with associated
eigenvalues 0 # X # X £ 0, then

Mv, 0"y = (Tv,v") = (v, TV') = N{v,0") = 0= (A= N)(v,0).

Since X' € R and A # X we know that (v,v’) = 0. Thus, we have that

V =DCE,

AER
where Ey = {v € V : Tv = M}. Now note that
T(T'Ey) = T'TEy = T'AEy = N(T'E\) = T'E\ = N'E\
for some X € C. Thus you can find a simultaineous eigenbasis of T and T". O

Corollary 2.47 (There Exists a Basis of Sy which are Eigenforms of Hecke Operators). There exists a basis of Sk
such that every element is an Figenform of all Hecke operators T, .

Proof. Applying the spectral theorem immediately gives the desired result. O

Theorem 2.48 (Slash Operator is an Isometry of S (T'o(N)) w.r.t Petersson Inner Product). We have that {f|xv, glky) =
(f9) for all v € GLy(R) and f,g € Sk(Lo(N)).
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Proof. For every v € GLa(R) there exists 74/ € SLa(R) such that f|xy = f|xy’. Thus it is sufficient to prove the
identity for SLo(R). Note that

dy

— _dzx k dx dy
(flrys 9lky) = / yk flev(2) gliv(2) 5 = :
To(N)/H Y

/FO(N)/HJ(% z)%k f2)972) y?

Now since our measure is GLJ (R) invariant we make a substitution on the integral

Jm(y~12)k dx dy
(Fers gl = | e F(2) 9
Aoy /) J(7, 7 2)2H
Now doing some quick calculations we have that
Tmy et = M and ) = 2
Jyt, z)%

thus we have that ded

(s gl = | v 1) 90 g = (F.0)

Y(To(N)/H)

since our integral is independent of our choice of fundamental domain. O

Theorem 2.49 (Hecke Operators are Self-Adjoint w.r.t Petersson Inner Product on Si(Tg(N))). For all n and
f. 9 € Sk(To(N)) we have that (T,.f, g) = x§' (n) {f, Tug)-

Proof. For ad =n and bmod d let § = (&) and &' = (¢ *). Now since the slash operator is an isometry we have

(flr0,9) = (fIr0lk0", gl0") = (fl(3 2), glxd") = (f, g|x0").

Now note that
Tof =070 7 flkd =020 Y i (@) flis.

seAN seAl

Thus it follows that

(Tuf,g) =170 > (xd (@) flrd, g) = ™71 Y~ X (@) (x5, 9)

seAl seAl

nF27E N NN () (f, gled’) = nF PN (d) glkd).

seAl seAl

Let = ({ 1) € To(N). Thus, by modularity g = g|xT. So since § — T'¢' is a bijection on A} we have that

(Tnf.g) = (Tuf, glkT) = x5 (n) 027>~ (f.x0 (d) gk T[xd")
seAl
nk2EN " xo (d) gle T8y = nF2E N x0 (d) glkd”) = X6 () (f. Tug).
66A1 5’€A1

O

Corollary 2.50 (There Exists a Basis of Sk (I'o(IN)) which are Eigenforms of Hecke Operators). There exists a basis
of Sk(To(N)) such that every element is an Eigenform of all Hecke operators T,, with (n,N) = 1.

Proof. Note that since

we know that T, is self-adjoint w.r.t. the Petersson inner product for all (n, N) = 1. Applying the spectral theorem
immediately gives the desired result. O
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2.5 Atkin-Lehner Theory

Lemma 2.51 (Injection of Cusp Forms to Higher Level I). If f € Si(T'o(M)) and M | N, then f € Sk (To(V)).
Proof. Note that T'g(N) is a subgroup of T'o(M) when M | N. Thus, f € Sp(To(M)) = f € Sp(To(N)). O
Lemma 2.52 (Injection of Cusp Forms to Higher Level I1). If f(z) € Sx(To(M)) then f(rz) € Sk (To(rM)).

Proof. Let g(z) = f(rz) and let v = (%, ) € To(rM). Then we have that

st = 50m2) = 1 (v (s ) ) = 1 (et ) = £

where 7/ = (4, "). Note that dety’ = dety = 1 and that ¢N = 0 mod N, thus 7' € T'y(N). So by the modularity
of f on T'g(N) we have that

9(vz) = f((r2)) = §(v,r2)" f(rz) = (erMz + d)* f(r2) = j(v,2) g (2).
Thus ¢ is modular on T'y(rM) as desired. O

Corollary 2.53 (Injection of Cusp Forms to Higher Level III). If f(z) € Sk(To(M)), M | N, and r | (N/M); then
f(rz) € Sp(To(N)).

Proof. Simple consequence of the previous two lemmas. O

Definition 2.54 (Space of Oldforms). We define the space of level N oldforms, denoted SP'%(T'o(N)) as the cusp
forms “coming from those of lower level.” More precisely,

SPUTo(N)) = Spans | | {f(r2) : £(2) € Sk(To(M))}
]\])I/[;Ljyvr\(N/]w)

Definition 2.55 (Space of Newforms). The space of level N newforms, denoted S;***(I'o(N)), is the orthogonal
complement of the space of oldforms with respect to the Petersson inner product.

Lemma 2.56 (Hecke Operators Preserve SP4(Io(N)) and SV (I'o(N))). We have that T, : S'4(To(N)) —
Se(To(N)) and T,, = Spev(To(N)) — Spev(To(N)).

Proof. Note that if f € S14(To(N)) then there exists an M | N with M # N such that f € S,(I'o(M)). Then we
know T, f € Si(T'o(M)) since Hecke operators preserve Si(I'o(M)). But then we know that T, f € S¢!4(To(N)) by
the definition of the space of oldforms.

Now if f € Spe¥(T'o(N)) then we know that T, f € SV (T'o(IV)) since T}, preserves the space of oldforms and the
space of newforms is the orthogonal complement of the space of oldforms. O

Definition 2.57 (Newforms). A level N newform is an f € SP(I'o(N)) such that f is a normalized simultaneous
eigenform of all Hecke operators T, with (n,N) = 1.

Theorem 2.58 (Multiplicity-One Theorem). If f and g are newforms with the same Hecke eigenvalues A, for all
(n,N) =1, then f =g.

Proof. If f is a newform then we know it is a normalized Hecke eigenform. Furthermore, if

f(Z) = Z Cm62m'mz and g(z) _ c;ne%imz

1<m 1<m

then note that, for (n, N) = 1 one has

Anf:Tnf: Z Z X(])V(d) dkilcmn/d262ﬂ—imz

0<m d|(m,n)

Ang =Thg = Z Z Xé\](d) dkilcmn/dﬂf%ﬂmz-
0<m d|(m,n)
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Matching the m = 1 coefficients we have that A, = A,c1 = ¢, and A\, = A\,¢] = ¢, since ¢; = 1 and ¢} = 1 comes
from f and g being normalized. Thus, ¢, = A\, = ¢, for (n, N) = 1. Thus we have that

f=g= > (cm—d,)e’™™m €SP TH(N)).
(m,N)#1

But note that we have expressed an oldform as a linear combination of newforms, and the space of oldforms is
orthogonal to the space of newforms; so we know that f — g = 0. O

Corollary 2.59 (Newforms are Eigenforms of all Hecke Operators). A level N newform f is a normalized simulta-
neous eigenform of all Hecke operators T,,.

Proof. Suppose T,,f = A, f for all (n, N) = 1, and note that

Thus, T, f is a Hecke eigenform of all (n, N) = 1. So we know there exists A,, such that \,,g = T,,f where g is a
newform. Then we have that

Am Thyg = TnTmf = )\nTmf = >\m)\ng = Thg = )\ng~

But since f and g are newforms with the same eigenvalues at (n, N) = 1 we know that f = g by the multiplicity one
theorem. Thus,

Tof = Amg = A f-
So f is a simultaneous eigenform of all Hecke operators T,. O

Corollary 2.60 (There Exists a Basis of Sp®¥(I'o(NN)) which are Eigenforms of Hecke Operators). There exists a
basis of Sp°*(T'o(N)) such that every element is an Eigenform of all Hecke operators T,,.

Proof. Note that since
(Tnf,9) = x5' (0)(f, Tug)

we know that T;, is self-adjoint w.r.t the Petersson inner product for all (n, N) = 1. Applying the spectral theorem

and renomralizing tells us that we can construct a basis for Sp°¥(I'o(IN)) with all of the elements being newforms.

By the above we know that newforms are Eigenforms of all Hecke operators. O

Lemma 2.61 (The Fricke Involution Preserve My (T'o(N)) and Si(T'o(N))). If we let Wf = flrw where w =
(1% *1/0*/ﬁ), then we have that W : M (To(N)) = Mi(To(N)) and W : Si(To(N)) = Sk (To(N)).

Proof. First note that if v = (% 4) € [o(N) then o/ = ( _iy =) € To(INV) and we have that

a

o= 573 - (A (D T

Thus if f € Mg(To(NN)) then, by modularity we have that
(WHy = flawley = flewy = fley'w = fleyew = flrw = W .

Thus Wf € M,(To(N)) also.

Lemma 2.62 (The Fricke Involution Commutes with Hecke Operators). We have that WT,, = T,,W.

Proof. Note that
WT,f =nf 270 3" flidlew =271 3" flrdw.

seAl seAl

Now for § € AY there exists v/ € ['g(N) and 6’ € AY such that dw = wy'6’ and indeed this map & — ¢’ forms a
bijection across elements of AY. Thus,

WTnf:nk/271 Z f|k6w:nk/271 Z f|kw7/6/:nk/271 Z f|kw|k7/‘k5/:nk/271 Z (Wf)‘k7/|k5/~

SEAN s'eAN s'ealN s'ealN
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Now since W f : My(To(N)) = My(To(N)) we know that W f is modular, thus

W, f =n*270 N (W k8 =n 20 3 (Wh)ed' = T,W f
5'eAlN §'eAN

exactly as desired. O

Lemma 2.63 (Hecke Eigenforms are Eigenforms of the Fricke Involution). If f is a Hecke eigenform then f is an
eigenform of the Fricke involution. Specifically, W f = +f.

Proof. Now note that if f is a Hecke eigenform, then g = f/c; is a newform. Suppose T,,g = A, g for all n. Now note
TWg=WT,g=WA,g=\,Wg.
Thus Wy is a Hecke eigenform, and we know that W g = wh where h is a newform. Thus
wlyh =T, Wg=A\Wg=w\,h = T,h = A\,h.

But since g and h are newforms with the same Hecke eigenvalues, by the multiplicity one theorem we know that
g = h. Thus,
Wf=cWg=ciwh=cwg=wf

o= (5 Y -G enen

as desired. Now note that since

by modularity we have that
= flaw® = flawlpw = WWf = wW f = wwf = w?f.
Thus w? = 1 and so w = +1. O

Theorem 2.64 (Functional Equations for L-Functions Associated with Hecke Eigenforms). For f € Sy where f is
a Hecke eigenform, we can extend L(f,s) to an entire function, and if

A(f,5) = N*2M(f(it))(s) = N*/2 (21)~* T'(s) L(f, s)

then we have that

A(f7 S) = :l:lkA(fa k — 5)
Proof. Recall that for all o > 0, I'(s) is defined as
I(s) = / ettt dt.
0
Now if we do the substitution ¢ = 2mnu, then after some manipulation we have that
(2mn)~°I(s) = / e~ 2mmips=l gy,
0
Now if we take the sum over all n > 1 with the coefficients c¢,,.

2m) T L(f,9)T(s) =Y _cn (2mn)*T(s) = Y _cn /OOO o—2mntys—1 gy

1<n 1<n

Now note that, using Hecke’s bound and the substitution uw = 27wnt we have

Z/ }Cn 672ﬂ-ntt871‘ dt < Z nk/z/ e*27\'ntt071 dt
1<n 0 i<n 0
= () ol [T ety - BT,
1<n 0 (2m)e
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For o > 1+ k/2 we know this converges. So by Fubini-Tonelli, when o > 1 4 k/2, we can interchange the sum and
the integral as needed.

(2m) = L(f,9)T(s) = 3 e /O ety gy /O T et g = /0 TRty Y dt = MUF(E)(s).

1<n 1<n

Now note that

oo

oo 1/\/ﬁ
(2m)~" L(f, 5)T(s) =/0 f(it)ts‘ldt=/0 f(it)ts—ldwr/l/ﬁf(z‘t)ts—ldt.

Now using the substitution ¢ = 1/(Nwu) on the first integral we have

1/VN o - 1/VN 1 s
/0 fat)*=tdt =—-N /Oo f <Nzu> u du

= NF/2=sik / (W f) (i) uF =5~ du = £ N*/2=sik / fiu) uF =1 du.
1/V'N 1/V'N
So we have that

(oo}

flt)yth—sLdt + / ft) s~ dt.

(27)7% L(f,5) [(s) = £N*/27%3} / h B
1/VN

1/V'N
Note that this integral is entire since f(it) has exponential decay as t — oo because f is a cusp form. Thus, we can
extend L(f,s) to an entire function. Returning to our line of thought, by replacing s with & — s and multiplying
through by +£N*/2-5;% we have

fit)t>~ dt £ N*/2=sk / fit)yth=s1dt.

+NF/2=sik (o)~ k=) [(f k — s)T(k — 5) = i?* /
1 1/VN

/VN
We know that k& must be even since f is a cusp form, thus i?* = 1. So we have that

A(f,s) = N¥/2(2n)~* L(f, s) T(s) = £i*N*E=)/22m)= =) [(f k — ) T(k — s) = 2" A(f, k — s)
as desired. O

Theorem 2.65 (Euler Product Expansion of L-Functions Associated with Newforms). If f € SP*(T'o(N)) is a
newform, then we have that

_ 2mimz — _cl N pk_l -
f(z) Zcme = L(f,s) H 1 pr +xo0 (p) per )

1<m p

Proof. Since f is a newform we know that f is a normalized simultaneous eigenform of all the Hecke operators T,.
Thus we know that the Fourier coefficients are multiplicative, so we have that

Lifs) = = =T1> 25 =TS whee S,=1+3
p

ms ms
1<n P Ogmp lgmp

Now note that ‘
>‘nf = Tnf = Z Z X(])V(d) dkilcmn/tﬁezﬂ—”’w'

0<m d|(m,n)

Matching the m = 1 term we have that \,c; = ¢,, and since ¢; = 1 we have that A\, =c¢,. Thus ¢, f = A\ f =T f
for all n. Note that it then follows that

cpCpm [ =TyTym f = Z X (d) dkilTprnﬁ»l/de = Tpmir f + X (p) pkilTpmflf =cpmir f + o' (p) pkilcpmq f

dl(p.p™)
Diving through by f we have that c,cym = cpm+1 4+ X' (p) pP¥"1epm-1. So we have that
&Sy _ S n Z D _ b Z comit + X0 ()PP rem o . Z cpmit XY (p)pF? Z Cpm—1
- - +1 - +1 2 —1)s”
ps ps = pSpmS ps = p(m )s ps = p(m )s p2s = p(m )s
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But now note that

CpSp Cp

pS pS

Rearranging we have that

5= (1-

as desired.

>

1<m

C
£+
p

S

C,m N k—1 Com— N k—1 S
(;-:11)3 A (pgsp Z (51—11)5 = (S =1+ 20 (p)lzjs =
p p up P
k—1y\ —1 k—1y\ —1
p ¢ p
X0 (p) 5 ) — L(f,S)=H<1—’;+xév(p)25 )
p » p p
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