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1 Multivariable Calculus

1.1 Green’s Theorem

Theorem 1.1.1. Let C be a piecewise smooth, simple closed curve in the plane and let D be the region bounded by
C. Now if M and N are defined on an open region containing D then we have that

fMda:—l—Ndy:// (M—W> dzx dy.
c p \ Oz oy

Remark. Note that Green’s theorem follows as a corollary to the generalized Stoke’s theorem.

(1) Example Problems: Green’s Theorem

Example 1.1.2 (Fall 2023, Problem 1). Use Green’s theorem to evaluate the integral
7{ V1+er® de + 4y dy
c

where C' is the boundary of the triangle with vertices (0,0), (1,0), and (1, 3) with the standard orientation.
Solution. Note that

2(éla:y) =4y and g\/ 1+e** =0.

ox Oy

Thus by Green’s theorem we have that

1 3z 1 1
?{ V1 + e do + dzy dy = / / dy dy dr = / (2?/2\3'?0) do = / 1827 di = 69”3’;70 =6. O
c o Jo 0 . 0 -



1.2 Jacobian Matrix: Change of Variables

Lemma 1.2.1. Let D be a region bounded by a piecewise smooth, simple closed curve in the plane. Let f, g, and h
be continuous functions, we have that

o ;o ;o 89/8x’ 39/53/ N,
J[ rwndziy= [[ statat s nta-ae (30055 9000 asay
This generalizes to higher dimensions in the natural way.

(1) Example Problems: Jacobian Matrix
Example 1.2.2 (Spring 2021, Problem 5). Let R be the parallelogram (0,0), (1,1), (3,0), and (2, —1). Evaluate

/ /R (2 + 2y)2e"Y dA.

Solution. We would like to apply the transformation

z\ (1 2 T It tivel L1 =2\ (2" _ (=
s =\ 2 or alternatively sl 1 v )=\ )
Thus we have
1 (3 3 ) 1 _9 3 3 )
// (z +2y)%e* Y dA = 77/ / (z')%e¥ - det ( 11 > dx' dy' = / / (z')%e¥ da' dy'.
R 3Jo Jo - o Jo

This is now a very straight-forward integral to evaluate.

B 3 (43
(x')%e? da' dy :/ eV | =—
ke (5

3

3
) dy' = 9/0 e’ dy =9 (ey/ :;:0> =9(e*—1). O
=0

=




2 Complex Analysis

2.1 Harmonic Functions

Definition 2.1.1. A function f is harmonic if it satisfies the following equation

0? 0?
i A ')
ox2 = 0y?
Lemma 2.1.2. If a function u(x,y) is harmonic, then there exists a harmonic conjugate of u denoted v(x,y) such
that f(z) = u(z,y) +i-v(z,y) is holomorphic in z =x +1i - y.

Corollary 2.1.3. A function u is harmonic if and only if there exists a holomorphic function f such that u = Re(f).

(1) Example Problems: Harmonic Functions

Example 2.1.4 (Fall 2022, Problem 1). Show that u(z,y) = In (2* + y?) is a harmonic function in C\ {0}. Find a
conjugate harmonic function of u(x,y) in C\ {z : z < 0}. Show that it does not have a conjugate harmonic function

in C\ {0}.

Solution. Recall that a harmonic function f satisfies the equation

2 2
I
0x2 = 0%y
So, note that
Ju 2 and Pu 2® +y?) —22(2z)  2(y* —2?)
or x2+y2 or2 (x2+y2)2 - (ac2 +y2)2'
And similarly,
Ju 2y g v _ 2@ +y?) —2y(2) _ 2027 —y?)
dy Top2 yz 8y2 - (x2 —|—y2)2 - (x2 —|—y2)2'

So trivially we have that 9%u/dz% + 9?u/dy? = 0 wherever this function is defined. Noting that u(z) = u(z,y) =
In(z% + y?) = 2In|z|, it is clear that this function is defined on C \ {0}.
Since u is harmonic we know there exists a holomorphic function f such that u = fRe(f). There is the obvious
choice:
f(z) =2Log(z) = 21n|z| + 2 Arg(z)).

Indeed u = Re(f). Taking the imaginary part yields the harmonic conjugate
v(z,y) = 2 Arg(z + iy) = 2arctan(y/z).

Note that this function is continuous on the right half plane but not C \ {0}; hence this harmonic conjugate is valid
for the right half plane and not C\ {0}.
(Incomplete still)



2.2 Power Series

Definition 2.2.1. Given a power series ), ., an2" there exists a number 0 < R < oo such that for all |z| < R the
series converges absolutely, and for all |z| > R the series diverges. This R is the radius of convergence of the power
series Y i<, an2".

Theorem 2.2.2. We have that the radius of convergence satisfies

1/R = limsup |a,|"/™.

(2) Example Problems: Power Series

Example 2.2.3 (Spring 2024, Problem 2). Let

n

> z
n=1

Find its power series > ;- ; arpz® and find its radius of convergence.

Solution. Working over C[[z]], finding the power series becomes trivial.

3

F(z)zzlizn :Zsz":ZZz”:ZUO(n)z".

1<n 1<n 1<k 1<n d|n 1<n

Now note that 2 < gg(n) < n for all n > 1 (trivially). Thus we have that

limsup 2/ < limsup |an|"/" < limsup n'/".
n—roo n—roo n—oo

Note that
( lim 27 — lim n'/" = 1) — <lim sup 2/" = limsup n/™ — 1> .

nesoo oo n—o0 n—0o0

Thus 1/R = limsup,, , ., |an|"/™ =1 and so R = 1.

Example 2.2.4 (Stein-Shakarchi, Chapter 1 Problem 16abc). Find the radius of convergence for Zogn anz™ when
e a, =log’n
e a, =n!
e a, =n?/(4" + 3n)

Solution.

e Starting with a,, = log? n. Note that

log1
lim (log”n)Y™ = lim (logn)?/™ = exp <2 lim ogogn> = exp <2 lim

n—00 n—00 n—00 n n—00 nlnn) -
Thus, 1/R = limsup,,_, . (log®n)"/™ =1 and so R = 1.

e Now working with a,, = n!, we note that by Sterling’s approximation logn! = nlogn — n + O(logn). So we
have

log n!
lim (n))Y/"™ = lim exp %81\ _ lim exp(logn — 1) = oco.
" g

n—o0 n—o0 n—r00
Thus 1/R = limsup,,_, ., (n!)*/" = oo and so R = 0.

e Now working with a, = n?/(4" + 3n), note that for n > 0 we have 4" < 4" + 3n < 2-4". Thus it follows,

1/n

1 1. om 1 n? Loy, 1
- = — < - < — = —.
1 lim (n/2) < lim (4n ™ < 4nhm n 1

n—o0 n—o0

Thus 1/R = limsup,,_, ., (n?/(4™ + 3n))*/" = 1/4 and so R = 4.



Example 2.2.5 (Spring 2024, Problem 5). Let

which has convergence radius 1 . (Thus f(z) is a well defined holomorphic function over the unit disk A := {z € C:
2] < 1}.)

e Prove that f(z) does not admit a holomorphic extension to a neighborhood of 1 in C. Namely, there do not exist
a neighborhood U of 1 in the complex plane C and a holomorphic function g over U such that f|;, A = 9lyna-

e Further show that the unit disk is the natural defining domain of f(z). Namely, there do not exit a domain 2
strictly larger than the unit disk and a holomorphic function F' defined over €2 such that the restriction of F'
to the unit disk is f(2).

Solution. Suppose there exists a holomorphic extension of f to a neighborhood of 1. Then we know that f” is also
holomorphic in a neighborhood of 1 as well. Note that

Now let 2z = ret? where 6 = 27Tk/3N where 0 < k < 3¥. Thus

) = i %Z (¥ exp(2mik(3" — 1)/3") ) = exp(~2nik/3Y) i ::TZ (2" exp(2mik - 3°N) ).
n=1 1

But now we can rearrange as follows:

N N-1 3n _— . n,N oo 3n 3n7
exp(2mk/3 2 8 (r exp(2mk -3 > :E ol
Now note that
. — 3" an p 3m—1 . n—N
Tlg{lﬁ nzg . ET =00 and 321 por (r exp(2mk -3 )) < 00.

Thus by reverse triangle inequality, for r sufficiently large we have that

NZ ( 8" L exp (2mik - 3"—N))

But note that the LHS goes to infinity as r goes to 1. Thus lim,_,,- |f'(z)]| = oo as well.

Now note that if we choose k¥ = 0 and N = 0, then z = r. So lim,_,;- |f'(z)| = oo implies that f’ can not
be holomorphic in any neighborhood of 1, because f’ is not holomorphic at 1. Contradiction, thus f can not be
holomorphic in a neighborhood of 1.

Suppose there exists @ D ID such that there exists a holomorphic extension of f to Q. Then we know that f’ is
also holomorphic on € as well. Because our choices of z are dense on 0D, if we choose any Q D D, it must contain
some z in our dense set. So lim,_,;- |f'(z)] = oo implies that f’ can not be holomorphic in any neighborhood of
z, because f’ is not holomorphic at z. Thus f’ can not be holomorphic on . Contradiction, thus f can not be
holomorphic on €.

o0

E 3" 1_

n:N

<)l




Example 2.2.6 (Stein-Shakarchi, Chapter 1 Problem 19). Prove the following:

e The power series > nz™ does not converge at any point on the unit circle.

e The power series Y. 2" /n? converges at every point on the unit circle.

e The power series Y z™/n converges at every point on the unit circle except for z = 1.
Solution.

e In the case of > nz™ note that when |z| = 1 we have lim,, o [n2"| = lim, oo n|2|" = lim,, oo n = c0. So the
sum can not converge.

e Now in the case of Y 2™/n? note that when |z| = 1 we have

Z |z"/n2| = Z 2" /n? = an =72

Since the sum converges absolutely, the original series must also converge.

e Note that for all z # 1 and N € N that

N
>
n=1

So it follows from summation by parts that

Now note that
N

1L,
oy 2

n=1

0<

Thus we have that

But note that testing absolute convergence of the rlght hand side we have
k

) 2
S () X = S e s A e a

Since the series converges absolutely the original series converges for all z # 1.




2.3 Rouche’s Theorem

Theorem 2.3.1. For any two holomorphic functions f and g on some region K with closed contour 0K, it follows
that if |g(2)| < |f(2)| on OK then f and f + g have the same number of zeros inside K.

(6) Example Problems: Rouche’s Theorem
Example 2.3.2 (Spring 2024, Problem 3). Find the number of roots of z* — 6z + 3 = 0 such that 1 < |z| < 2.
Solution. Note that when |z| = 2 we have that
|—62] = 6]z| = 12 < 13 = ‘|z|4 - 3’ <|#* 43
Thus by Rouche’s theorem, 2* +3 = 0 and 2* — 6z + 3 = 0 have the same number of roots with |z| < 2. Noting that
A 43= (2 +iV3)(z* —iV3) = (2 = VB) (2 + V3) (2 —iV3)(z +iV3)

and that |v/3| < 2 gives us that z* — 6z 4 3 has four roots such that |z| < 2.
Note that when |z| = 1 we have that

|24 = |2 =1 < 3=16]2| — 3| < |62 +3].
Thus by Rouche’s theorem —62 +3 = 0 and z* — 62 + 3 = 0 have the same number of roots with |z| < 1. Noting that
—62+3=—-6(2—1/2)

and that |1/2| < 1 gives us that 2* — 62 + 3 has one root such that |z| < 1.
Thus there are three roots of 2 — 6z + 3 = 0 such that 1 < |2| < |2].

Example 2.3.3 (Fall 2021, Problem 1). Fix 0 < R < 7/2. Prove that for sufficiently large n the polynomial

22 20
Po(z) =142 + = =0
() =14+ g+t ]
has no roots such that |z| < R.
Solution. Note that
(i) 1+22+z4+ 1(Z+ )
cos(iz) = — 4+ —+...=-(e"+e7).
‘ 21 "l 2

Now fix 0 < R < 7/2 and let € > 0 be such that R + ¢ < w/2 also. Since cos(iz) has zeros at +mi/2, £37i/2,...
there exists M such that 0 < M < |cos(iz)| for |z| < R + . Now note that

Z2n+2 22n+4 22n+6

[Pu(2) = cos(iz)] = ‘_(2n+2)! T @n+ 4 (2n+6) +’

2 2 4 6
2™ 2| | 2|

= (2n)! ((2n+1)(2n—|—2) Tent D 2ntd) @it @n+0) +>
il <lel2+lzl4+lzlﬁ+...> L (o0l ool

N

1

IN

(2n)! 2! 4] 6! (2n)! 2

Thus if |2| = R then we have

2n 6R 67R
|Pn(z)—cos(iz)§(§n)!< *2 )

Noting that the right hand side of the above goes to 0 pointwise in terms of R as n — oo , there exists some N such
that for all n > N and |z2| = R we have

R2n R —R
P (2) — cos(iz)| < (6 te

@n)! 5 > < M < |cos(iz)].

Now by Rouche’s theorem we know that P,(z) = 0 and cos(iz) = 0 have the same number of roots such that |z| < R.
Thus there exists sufficiently large n such that P,(z) = 0 has no roots such that |z| < R.



Example 2.3.4 (Spring 2021, Problem 1). Prove that all five roots of 22° + 82 — 1 = 0 are such that |z| < 2 but
only one root is such that |z| < 1.

Solution. Note that when |z| = 2 we have that
182 = 8|2 = 16 < 31 = )2|z\5 - 1‘ <[22° —1].
Thus by Rouche’s theorem, 22° — 1 = 0 and 22° + 82 — 1 = 0 have the same number of roots with |z| < 2. Note that
2:° — 1= (2 = Y1/2)(2 = 7P /1/2) (2 — 7P Y/1/2) (2 = /5 Y/1/2) (2 = 75 /1/2)

and that ‘{’/1/2‘ < 2 gives us that 22° + 8z — 1 has five roots such that |z| < 2.
Note that when |z| = 1 we have that

225 =2/2° =2 < 7= [8]2] — 1] < 82 — 1.
Thus by Rouche’s theorem, 8z —1 = 0 and 2z° + 8z — 1 = 0 have the same number of roots with |z| < 1. Noting that
82—1=8(2—-1/8)
and that |1/8| < 1 gives us that 22° 4+ 8z — 1 has one root such that |z| < 1.

Example 2.3.5 (Spring 2023, Problem 2). Fix A € C such that it is purely imaginary. Prove that z = A — e /3
has exactly one solution in the strip S = {z € C: |Re(z)| < 1}.

Solution. Let x = MRe(z) and y = IJm(z) and note that for z € S we have that |x| < 1. We have that

€Z2/3‘ = em(zz)/?) = e‘”2_y2/3 = e“ze_yz/?) < e’”2/3 <e/3 <1

Now let R, be the open rectangle with opposite corners (—1,A — ) and (1, A + ). Now note that for » > 1 for
any z € OR, we have that |z — A| > 1. Thus for all » > 1 and z € R, we have

ez2/3‘ <1<|z— A

Thus by Rouche’s theorem, z — A = 0 and z — A+¢* /3 = 0 have the same number of roots in R,. Thus z — A+e* /3
has one root in R, for all » > 1. Noting that

RiCRyCR;C...CS and URT:S
1<r

gives us that z — A + e’ /3 = 0 has one solution in S.

Example 2.3.6 (Spring 2022, Problem 2). Show that 2 + 22 — ¢ = 0 has exactly one solution in the upper-half
plane.

Solution. Let 2 = Re(z) and y = Jm(2) and note that for z € H we have that y > 0. Note that
’—eiz| =e V<1

Now let R, be the open rectangle with opposite corners (—r,0) and (r,r). Now for any z € C note that

’2+x2—y2’§\/(2+x2—y2)2+(2xy)2=’2—&—3’2’ and that ‘2—\z|2’§’2+z2’.
Now let r > 2. Then for any point z € R, on the bottom edge we have —r < x < r and y = 0; so
2<2+2% = 2427 - 0% < |2+ 2.
Now for any point z € R, on any other edge we have |z| > r; so

2§r272§|z\272:’27|z\2’ <2422



Thus when r > 2 for every z € R, we have that 2 < |2+z2‘ and by extension ’—eiz| <l<x2< ’2 + 22’. So by
Rouche’s theorem we have that 2 + 22 = 0 and 2 + 22 — ¢¥* = 0 have the same number of roots in R,. Noting that
24 22 = (2 — iv/2)(z + iV/2), we have that 2 + 22 — %% has one root in R, for all » > 2. Noting that

RyCRs3CRyC...CH and |JR.=H

2<r
gives us that 2 + 22 — €** = 0 has one solution in H.

Example 2.3.7 (Fall 2020, Problem 2). Prove that if 1 < a < oo is a real number, then f,(z) = z 4+ a — e* has only
one zero in the left-half plane and that the zero is real.

Solution. Now let x = R(z) and y = fRe(z) and note that for z € i we have that < 0. Note that
|—e®| = —e® < 1.

Now let R, be the open rectangle with opposite corners (—r, —r) and (0,7). Now note that by simple geometric
reasoning for any r > 2a and z € R, we have that |z 4+ a] > a > 1. Thus for all » > 2a¢ and z € R, we have that

|—e*| <1l<a<|z+al

Thus by Rouche’s theorem, z 4+ a = 0 and z + a — e¢* = 0 have the same number of roots in R,.. Thus z + a — e* has
one root in R, for all » > 2a. Noting that

R[g(ﬂ C R[2a]+1 C R[QGH_Q C...C1H and U R, =1H

[2a]<r
gives us that z + a — e® = 0 has one solution in ¢H. Note that
fa(0)=0+a—-e’=a—-1>0 and fa(—a) =—a+a—e*=—-e"*<0.

Thus by the intermediate value theorem there exists at least one real zero of f, on the interval (—a,0).
Since there exists one solution to z +a —e* = 0 in iH DO (—a,0) and there exists at least one solution to
z 4+ a — e* = 0 on the interval (—a,0), it follows that there exists one solution to z +a — e* = 0 in ¢H and it is real.

10



2.4 Residue Theorem

Definition 2.4.1. We define the residue of as follows. Given a function f holomorphic in a neighborhood of a point
Zo, we can write the Laurent expansion

f(z)= Z an(z — 2z0)" and then Res(f,2z0) = a—1.
nez

Lemma 2.4.2. If f has an order n pole at zo then

Res(f, z0) = ! lim ! (z—20)"f(2).

(n— 1) 2=z dzn1

Theorem 2.4.3. Let f be holomorphic on an open set containing a closed contour C' and let P be the set points
inside C' which are poles of f. Then we have that

fcfdz = 2mi Z Res(f, z0)

zo€P

(8) Example Problems: Residue Theorem
Example 2.4.4 (Spring 2024, Problem 1). For a # 0 evaluate

/ tan(t + ai) dt.
0

Solution. Note that

s T gin(t .
/ tan(t + ai) dt = / sin(t + ai) dt.
0 0

cos(t + ai)

Recall the Weierstrass factorization of cos z
2z
cosz:H <1—>.
0 w(2k — 1)

From this it follows that the poles of tan(t 4 ai) are of order 1 and are located at £km — ai where k is odd. Now
for a > 0 we define the contour C as the counterclockwise orientation of boundary of the rectangle with opposite
vertices (0,0) and (7, —R) where 0 < a < R. Now we evaluate using the residue theorem

j{ tan(z + ai) dz = 2mi Res(f,7/2 —ai) =2mi  lm (2 — 7/2 + ai) tan(z + ai).
c

z—(7/2—ai)

Note that this is an indeterminate form as

/9 o )
lim (2 —7/2+ ai)tan(z +ai) =  lim (z=m/2+ ai) blr,l(z + ai)
z—(m/2—ai) 2— (7 /2—ai) cos(z + ai)

with the denominator and numerator both going to 0. We apply L’Hopital’s rule to remedy this

— lim (2 — m/2+ ai) cos(z + ai) +sin(z +ai)  0-0+1

: - —1.
2= (m/2—ai) —sin(z + a) -1

Thus
f tan(z + ai) dz = —2mi.
C

Now note that tan(z) = tan(m + 2). So, when 0 < a < R we have
—-R T —R ™
—2mi = 7{ tan(z + ai) dz = / tan(ti + ai) dt + / tan(t — Ri + ai) dt — / tan(m + ¢ + ai) dt — / tan(t + ai) dt
c 0 0 0 0

= / tan(t — Ri + ai) dt — / tan(t 4 ai) dt.
0 0

11



Thus when a > 0 and R = 2a we have by algebraic manipulation

—2mi = / tan(t — ai) dt — / tan(t + ai) dt
0

0

=- / tan(—u — ai) du — / tan(t + ai) dt
0 0
= / tan(u + ai) du — / tan(t + ad) dt
0 0
0 ™ g ™
=- / tan(u + ai) du — / tan(t + ai) dt = — / tan(t — w + ai) dt — / tan(t + ai) dt.
0 0 0

—T

Now note that tan(z) = tan(m + z). So
—27i = —2/ tan(t + ai) dz = tan(t + ai) dt = mi.
0 0
Now for b < 0 and @ = —b we have that

/ tan(t — bi) dt = / tan(t + ai) dt = mi.
0 0

But we have that

™ - 0 ™
mi= / tan(t — bi) = — / tan(—u — bi) du = — / tan(u + bi) du = — / tan(t — 7 + bi) dt.
0 0 0

Now note that tan(z) = tan(m + z). So
/ tan(t + bi) = —mi.
0

Example 2.4.5 (Fall 2023, Problem 2). Assume £ > 0 and compute
2
/cos( mxf) de.
R

2 4+1

Solution. Trivially the poles of

e27rzz§

2241
are located at +i and are each of order 1. Let C be the counterclockwise orientation of the radius R upper-half
semicircle centered at 0. Now for R > 1 we have by the residue theorem that

2miz€

eQTmzf e
?{ dz = 2miRes(f, 1) = 2mi lim - = e
c

—2m€
2241 zoi T 41 '

Now let v; be the segment of C' along the real axis and let 5 be the semicircular part, preserving the orientation of
both contours from C. Now note that because sin is odd we have

/ i /R cos(2m26) + isin(2n26) /R cos(2mzg) .
T T 2 +1 A

Now note that

2miz€
(&

dz
2241

exp 2mRew£)
R26216 +1

0< =

R/ exp(QWZRezef o 4o o,
0

R2 6216 +1

<R/

|exp(27riRewf)‘ = exp(—2méRsinfh) < 1 and that RZ-1< |R262i0 + 1‘.

627Tiz§ ™
/ 5 dz| < R /
Y2 # +1 0

Y2

Now note that for R > 1 and 0 < 0 < 7 we have

Thus we have that

exp(27riRei9§)

0< -
R26219 +1

T do TR
db < = .
_RA‘W—I R 1

12



Thus by the squeeze theorem, in the limit R — oo we have that the integral over 7, vanishes. So,

e2mizt R cos(2mz€) e2mizt d /°° cos(2mz€) d
z = — az.

e = lim dz = lim dz lim
R—oo Jo 22 4+1 Rooo J_p 22 * R b 221 e 2241

Example 2.4.6 (Spring 2023, Problem 1). Let a,b > 0 such that a # b; compute the integral

/ COS & d
e @+ a2+ 02)

Solution. Trivially the poles of '
622

(22 + a?)(22 + b?)
are located at +ia and £ib and they all have order 1. Let C be the counterclockwise orientation of the radius R
upper-half semicircle centered at 0. Now for R > max(a, b) we have by the residue theorem that

eiz ) ) . .
?i RIS dz = 2miRes(f,ia) + 2mi Res(f, ib)
iz eiz
= 2mi li 2mi 1i
[ ey y ey ) S A e Y P

. ome ¢ n Te ? T et e

S a(®—a?)  b(a2—-0b2) a2—-b2\ b a )’
Now let 71 be the segment of C' along the real axis and let «2 be the semicircular part, preserving the orientation of
both contours from C. Now note that because sin is odd we have

e'? B cosz+isinz R CcoS z
e g 4= ST IVCER T 5oy e e
5 (22 +a?)(22 +b?) _g (2% +a?)(2* +b?) _g (22 +a?)(z* +b?)

Now note that

oz T exp(iRe®) 0 ™ exp(iRe')
0< dz| = |iR . . "Ydh| < R . . do.
= [m (22 + a2)(22 + b?) z ¢ /0 (R2e2i + a2)(R2e219 + b2) € = /0 (R2e2i0 + q2)(R2e2 + b2)
Now note that for R > max(a,b) and 0 < 6 < 7 we have
|exp(iRew)‘ = exp(—Rsinf) < 1 and that (R? —a®)(R?* - b?) < |(R262i9 + a?)(R%** + b)|.
Thus we have that
e g exp (iRew)
0< dz| <R , ‘ de
= L (2 +a?)(2+02) 7| = /0 (R2¢29 + a2)(R229 + b2)
< R/7T dé B R
R R S R Y
Thus by the squeeze theorem, in the limit R — oo we have that the integral over +5 vanishes. So,
B N N, e i
a?—-b \ b a ) R Jo (22 +a?)(22 +b2)
et* et® o0 cos z
= 1. d 1' d - d .
ok S e Py R G P e P ) R /,m (2 +a?)(z2+02)

Example 2.4.7 (Fall 2022, Problem 2). Evaluate the integral

2

x
/74 1dx.
R.T+
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Solution. Note that ' 4 ' |
Z4 +1= (Z _ em/4)(z + em/4)(z . 637”‘/4)(2 + 637”’/4).

Thus 22/(z* + 1) has poles at e™/4, 37i/4 ¢57i/4 and ¢"™/* of order 1. Let C be the counterclockwise orientation
of the radius R upper-half semicircle centered at 0. Now for R > 1 we have by the residue theorem that

2
7{ 2427+1 dz = 2mi Res(f, e™/*) 4 2mi Res(f, e3™/4)
c
22
=2mi i - — —
i Z_>exlprgfi/4) (2 + emi/%)(z — e3mi/4) (2 + 37i/4)
+om li 2
Uy zﬁex:)lg.’}ﬂi/‘l) (z _ e”i/4)(z + e7ri/4)<z + e3m‘/4)

1 —1

- - + 27 - - -
(V2)(2emi/4)(iv/2) (—v2)(iv2)(2e37/4)
_m ™ Wiy gmija _ T

V2

Now let v1 be the segment of C' along the real axis and let 5 be the semicircular part, preserving the orientation of

both contours from C. Now note that
2 R 2
AR _p2*+1

s R262i0 ) ™ R2
R[| —————e%dl| <R | ————db.
W), Riewio 1€ ‘ = /0 |R*e40 1|

=27 -

Additionally, note that

0<

2

z
—d
et

Now note that for R > 1 we have that

R'—1=|R"—1| < |R'" +1].

Thus,
22 B R? T R2 TR3
dz| <R ———d0 <R df = .
/72z4+1 7= /0 |RYe%0 +1| " — /0 RY—1 R —1

Thus by the squeeze theorem, in the limit R — co we have that the integral over v, vanishes. So,

0<

T 22 22 22 o 22
— = 1li ———dz=1i —d li dz = —dz.
T dm = = Z+R£3>OL2Z4+1 = e

Example 2.4.8 (Spring 2022, Problem 1). Compute the integral
2
JEC
R T +1
Solution. Firstly, recall the identity 2 cos?(z) = 1 + cos(2z). Thus
/ 0 (@) g L / L oyl / 0s20)
R.'L'2+1 2 sz—f—l 2 R332+1
Using our solution to Example 2.4.5 we know that
cos(2x) 7r cos?(x) 1 1 T
der = — dr = = de + —.
/R 2i1 T - /R 211" Z/RxQ—i—l x+2€2

Let v be the counterclockwise oriented upper-half circle centered at 0 with radius R. Noting 22 + 1 = (z —i)(z +1),
by the residue theorem we know that for R > 1 we have

d 1
/ 2 — omiRes(f,i) = 2milim —— = .
422 +1 z—i 2+ 1
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Now let 7/ be the arc portion of v. We parameterize this with z = Re and dz = iRe*’ df where 0 < § < . Thus

de.

/, 2+1 R2e219—|—1

2=\ <

But note that for R > 1 we have R? — 1 = |R2 — 1’ = |’R262w| — 1’ < |R282i0 + 1‘. Thus

Now note that

iRe" ™ 1
R2e20 4 1 ’ 9 = R/O | R2e20 4 1| do.

dz TR
22 +1’ R/ |R262’9+1| R/ R2—1 TRE-1

Note that in the limit R — oo, this integral vanishes. Thus becuase both of the following limits exist, we have

dz . dz dz . dz . dz
= lim — = lim — lim =7—-0=m.
RZ2+1 R—o0 722+1 ,Y/,Zz-l-l R~>00722+]. R—o0 ,Y/ZQ-F].

So we have that 2( )
cos®(x 1 dz T s
dr = = — =1 —2).
/Rm2+1 * 2/Ra:2—|—1+262 y (L+e™)

Example 2.4.9 (Fall 2021, Problem 2). For n > 2 explicitly compute

/xizndx
r1+x

14+ $2n _ (.’)3 _ eiﬂ/(2n))(w _ e3i7r/(2n)) o (SL‘ _ e(2n—1)z’7r/(2n)).

Solution. Note that

Let v be the counterclockwise oriented upper-half circle contour centered at 0 with radius R. Note that by the
resiude theorem, for R > 1 we have

A T 0z = 2mi ) Res(f, P01/,

k=1
Now note that if zp = e(?*=1)#7/(27) we have that 23" = —1. Now we evaluate the residue in the general case.
. (z—2z) 2" 2 — g2 . (nH1)2" —nzee™ oM P
Res(f, z0) = llm%: lim =% — lim ( ) 0 =0 __=_20
2oz 14 220 I z=r20 2nz2n—1 2nz3n 2n

Thus we have that
P —D(n+1)m T ) _y
/71_'_22” = Zexp< o ) :—ﬁ;exp(mk(l—i-n ))-

Now let 7' be the arc portion of the contour 7. Now we parametrize z = Re? and dz = iRe’ df and note

on ™ Rneine )
———dz = - iReYd0.
/y’ 1+ 22n z /0 1+R2n621n9 the

on ™ R"eint ) ™ do
” 1+ 22n Z’ /0 1 +R2n622n9 vhe ‘ — o |1 + R2n627,n0‘

Now note that

But now note that for R > 1 we have that

RZn — 1= ’RQTL _ 1| _ ‘|R2n62in9’ _ 1‘ < ‘1+R2n62in9’.

prg
—Fdz
‘/,;/ ]. +Z2n

Thus

T do T d R+
< R"“/ —_— < R”“/ =
— o ‘1 + R2n621n9| — o R2n —1 R2n —1
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Note that when n > 2 the right hand side goes to 0 in the limit R — co. Thus because both limits exist, we have

Zn ZTL Z'VL
/7dz: lim / dz—/idz
r 1+ 227 R—oo \ J, 14 227 y 14 22n

n n

. . > K n . . o n . "
_ngnoo ewr dz—ngnoO W,mdz——ﬁ;exp(mk(l—l—n ))—O——E;exp(mk(l—kn ))-

(Unsure where to go from here)

Example 2.4.10 (Spring 2021, Problem 3). Evaluate the integral

/ Ccos X d
gt —(m/2)

Solution. Let v be the semicircular contour centered at 0 with radius R > /2 with semicircular indents along the
real axis centered at +7/2 with radius 1/R. Let v~ be the semicircular indent centered at —m/2 and let 4+ be the
semicircular indent centered at /2. Similarly, let 4/ be the main semicircular arc. Now note that

[ /://:Z SIRE /;2+1/R ref e [ [ 1 e s0-5 o

Now by the residue theorem we have that

iz

e B exp(—7m/2)\ _ —iex .
/f = 2miRes(f,im/2) = 2mi 2—157?/2 GCrin/) @ =29 4mi (—m?’) =2 p(—m/2).

Now note that
T exp(—Rsin )

=B R (a2

4o4i0 _ ) do.

f’ | / REXP ZRew) iRe" df

Since 0 < # < 7 we have that exp(—Rsinf) < 1. So,

exp Rsme) de TR
f‘<R/ d9<R/ (2t B (/e

So we have that f,y, f — 0 as R — oco. Similarly we have that

/ / exp(—im/2 +ie" /R) iet? d@—/_ﬂ/2+1/R exp(iu) p
a2+ e R —(7/2)" R T ey wt—(m/2)r 0

But now note that

/ /_”/QH/R exp(iu) du—/_ﬂ/%l/R cosudu _H,/_’T/QH/R sinu du
7n/2—1/R ut — (m/2)* (m/2)* —7/2—1/R ut — (m/2)* —7/2—-1/R ut — (w/2)%

/ f_/ﬂ/2+1/R exp(iu) du—/ﬂ/2+1/R cosu du —&-i/W/QH/R sinu du
i+ n/2—1/R ut — (w/2)4 n/2—1/R ut — (mw/2)4 n/2—1/R ut — (m/2)%

But note that

Similarly,

/“/2+1/R sinudu /“/21/R sin(—u)du /W/2+1/R sinu du
7n/2—1/R ut — (m/2)* —n/24+1/R (—u)* = (m/2)* —n/2—1/R ut — (w/2)

Thus,
/ f+/ f_/‘n'/Q—‘rl/R COS’udu +/7T/2+1/R COSudU _/—7’|’/2+1/Rmef+/7r/2+1/Rmef
v vt —7/2—1/R ut — (m/2)* 7/2—1/R ut — (m/2)* —7/2—1/R n/2—1/R '
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Note that this is purely a real valued integral. Now taking the real part of our integral summation yields

—m/2—1/R n/2—1/R R
——exp —m/2) = /D%ef /iﬁef—i—f)‘ie(/ f+/ ) / D‘ief+/ %ef+/ Re f.
ot — —7/2+1/R /2+1/R

Thus, by substituting the previous expression and noting that it is purely real, we have

4 —7/2—-1/R —m/2+1/R 7/2—1/R T/241/R R
——exp (—m/2) = /ERef—&-/ %ef—k/ i)%ef—k/ %ef—k/ %ef—k/ Re f

—7/2—1/R —7/2+1/R /2—1/R /2+1/R
:/ D%ef—&-/ Re f.
v’ —-R

Note that in the limit R — oo the term over 4’ vanishes, thus

cosrdz
_7exp —m/2) = /i)‘{ef /x4 /28

Example 2.4.11 (Fall 2020, Problem 1). Evaluate the integral
/ cosx dae
R 14+z+ 2

1+z+2%= (:p— (-1 +z'\/§)/2) (m— (—1 —i\/§)/2) .

Solution. Note that

Thus by taking v as the semicircular contour centered at —1/2 with radius R > v/3/2, we have by residue theorem

e'® ‘ _ e'? 2mexp(—i/2) exp(—v/3/2)
/ ———5dz=2m lim . = .
s 1+z42 2 (—1+iv3)/2 (2 — (=1 —i/3) /2) V3
Note that
/ COSZ o, / e’ &) — 9 2 exp(—i/2) exp(—V/3/2) _ 2m cos(1/2) exp(—v/3/2) '
5 142+ 22 5 142+ 22 V3 V3

Now if we let z = Re'® and dz = iRe'?df to parametrize the arc (which we denote '), we have that

) ™ exp(iRe) 0 /Tr exp(—Rsin0)
- - < - - .
ZR/ 1+ Re?? + R2¢%0 © ¥ < R o |14 Re® + R2e%9| a0

eiz
[ -
' 1+z+42

Now note that for sufficently large R we have

R*—R—1=R*—(|Re"|+1) < R*—|Re" + 1| = |R* — |Re" + 1|| = ||[R?*| — |Re” + 1|| < |1 + Re™ + R?e*?|.

Thus because 0 < § < 7 we have that exp(—Rsinf) < 1 and thus

/ 672dz SR/ exp('—Rsm9)l dGSR/ i do _ TR
5 1+Z+Z 0 0 R

|1+ Rei? + R2¢219| -R-1 R2-R-1
Now note that in the limit R — oo we have that this upper bound vanishes. So by the squeeze theorem, we know
that the integral over 4/ necessarily vanishes also. Since the integral with cos z over 4 is merely the real part of the
above integral, we know this integral must also vanish. Thus because both limits exist and are finite, we have

/ Cos z d I / cos z d / cos z d
———dz= lim ——dz — ——dz
r 1+ 2+ 22 R—oo \ J, 14 2 + 22 v 1z 422

) cos z i cos z 27 cos(1/2) exp(—v/3/2)
= lim ——dz— lim z = .
R—oo |, 14 24 22 R—oo Joo 14 2 + 22 V3
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2.5 Argument Principle

Theorem 2.5.1. If f is a meromorphic function inside some closed contour C, and f has no zeros or poles on C
itself, then we have
L[ f'(z)

2ri Jo f(2)

where Z and P are the number of zeros and poles respectively of f inside C.

dz=2—-P

Remark. For any contour v and meromorphic function f with no zeros or poles on vy, we loosely have that

1[G, M)

2mi J, f(2) 27

(1) Example Problems: Argument Principle

Example 2.5.2 (Fall 2022, Problem 4). Let D be a domain in C and let f be a holomorphic function in D. Suppose
that Re(f) > 0. Prove that for any closed C''-piecewise smooth curve C,

fc‘?dZZO

Additionally, use the argument principle to prove that for any A > 0,p(z) = z*+ iAz® + 1 = 0 has exactly one
solution in the first quadrant.

Solution. Suppose that there exists z € D such that f(z) = 0. Then Re(f(z)) = 0 as well which contradicts the
fact that fRe(f) > 0. Thus f has no zeros on D. Additionally, f has no poles on D, as it is holomorphic. Thus by
the argument principle we know that

/ /
L Pz poo_0=0 — ¢ Pa—o
2ri Jo p cp

Noting that P(z) is holomorphic on the plane, we have by the argument principle that

1 /
— b=z pP=z

2mt Jo p
for any closed contour C'. Now let C be the clockwise oriented quarter circle of radius R in the first quadrant. Let
1 be the path along the real axis between 0 — R, let 5 be the path along the quarter circle of radius R centered
at 0 between R — iR, and let 3 be the path along the imaginary axis between iR — 0. Note

/ / / /
2o f L k([ B [ P [ 7)o A ) o itole) 4 oy (o2
2mi Jo p 21 \J,, P v P vy D 27

Now note that for x € R we have
p(iz) = (iz)* +iN(iz)* +1=2* + NP + 1 € R = A, arg(p(z)) = 0.
It also follows from the above that
A, arg(p(2)) = arg(p(R)) — arg(p(0)) = arg(p(R)) = arg(R*) + arg(1 +iA/R+ 1/R*) = arg(1 + iA/R + 1/R").
From this it is clear that in the limit R — co we have that A,, arg(p(z)) = 0. Now for 0 < 6 < /2 note that
arg(p(Rei?)) = arg(RAe4%) + arg(1 + N/ (Re'®) + 1/(Re4?)) = 40 + arg(1 + i\/(Re") + 1/ (Riet)).

From this it is clear that in the limit R — oo we have that arg(p(Re)) = 4¢. Thus in the limit R — oo we have
that A, arg(p(z)) = 2m. Thus we have

lim Z = lim A, arg(p(z)) + A, arg(p(z)) + A, arg(p(z)) _ 0+27+0 _
R—o0 R—o0 2 2

1.
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2.6 Biholomorphic Mappings

Lemma 2.6.1. The Cayley transform maps the upper-half plane to the unit disk.

z—1

z+1

Lemma 2.6.2. This Mobius transformation maps the disk to itself. Fora € D and 0 < 0 < 27 we have

f:D—>D zr—>6i0(2a).
1—az

f:H—-D Z

Note that f(a) = 0.

Lemma 2.6.3. This transformation take the strip S = {z € C: |Jm(z)| < 1} to the right half plane —iH.
f:S— —iH z — exp(mz/2).

Lemma 2.6.4. Trigonometric functions can take the half-strip St = {z € C : |Re(z)| < 1, TJm(z) > 0} to H:
f:ST—H z > sin(mz/2).

Theorem 2.6.5 (Riemann Mapping). If U is a non-empty, simply connected subset of C that is not itself C, then
there exists a biholomorphic mapping f : U — D.

Theorem 2.6.6 (Caratheodory’s Theorem). If we have a conformal map f : D — U where U is simply connected
in CU{oo} and OU is a Jordan curve in CU{oo}, then there exists a continuous extension of f to g : D — U which
is also one-to-one.

(3) Example Problems: Biholomorphic Mappings

Example 2.6.7 (Spring 2023, Problem 3). Let D={z € C: 2| <1} and A={z€ C:0 < argz < 2n/5}. Find an
explicit biholomoprhism f: D — A.

Solution. Note that we have the biholomorphism
f:A—H z s 202 with inverse FheH— A z v 2205,
Likewise, recall the biholomorphism given by the Cayley transform

z —

g:H—D Z -
zZ4+1

1
with inverse gl:D—>H Z1 (1+2) .
—z

Composing biholomorphisms we have

22— 1+2\\**
gof:A—D Z — with inverse flogl:D— A zr |1 .
25/2 4+ 1—2z

Example 2.6.8 (Fall 2020, Problem 3). Construct a conformal map from S™ := {z € C: Re(z) < 0,0 < Im(z) < 1}
to the upper-half plane such that it has a continuous extension to the closure of S~ considered as a map to the
extended complex plane, and fixes 0. You may construct the map as a composition of elementary conformal maps.

Solution. Let ST = {z € C: |Re(z)| < 1, Im(z) > 0}, then we have the conformal map
f:ST =St z— —1—2zi.
We also have the elementary conformal map
g:ST—H z + sin(mwz/2).
We also have the extremely esoteric conformal map
h:H—H z+—z+ 1.
Note the composition

(1 + 2zi)

hogof:ST - H Zl—>1—|—sin<— 5

) with (hogo f)(0)=0.

Noting that both S~ and H are simply connected in CU {oo} and that JS™ and OH are Jordan curves in C U {oco}
allows us to conclude via Caratheodory’s theorem that h o g o f admits a continuous extension from S~ to H.
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Example 2.6.9 (Fall 2023, Problem 3). Does there exist a holomorphic surjection from D to C.

Solution. Yes, consider the inverse cayley transform

1
fD—>H such that sz(li_z>

Now for € > 0 we have
g:H—=>H—1ic such that Z =z — €.

And finally, we square H — ie to map to the whole complex plane.
h:H—ie—C such that z— 22

Our holomorphic surjection is simply the composition of these maps where ¢ = hogo f.
Example 2.6.10 (Spring 2024, Problem 4). Let ¢ > 0 and

D={z|>Llz—cl <1}, Fle)=—

zZ — Z9
where 21,29 € C are the intersection points of the circles |z > 1 and |z — ¢/ = 1 , with Jmz; < 0 and Jmzy > 0.
Find the value of ¢ such that F(D) is bounded by two rays with angle equal to 7/3. Then find F (D).

Solution. Note that F(z1) = 0 and F(z3) = co. Now note that F' is a conformal map, and thus preserves angles
(and similarly for F~1); so we have the geometry
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By simply examining the diagram, we note that the bottom angle of the triangle is also § = 7/3. Thus the double
hatched angles are also 7/3, and we have an equilateral triangle between the centers of the circles and z;. Thus,
¢ = 1. Therefore z; = (1 —i/3)/2 and 2z, = (1 4 iv/3)/2. Now note that when 2’ = 1 we have

Z—zm _1-(1 —iv3)/2 _ (1+iv3)/2 _ em/® — 28 and || =1
Z—z  1-(14+iV/3)/2 (1-+3)/2 e ™3

F() =

Thus because F(z1) = 0, F(z') = €2™/3 and F(zp) = oo, this arc of the circle centered at 0 maps to the ray
arg z = 27/3. Now note that when 2" = (3 +41/3)/2 we have

Pl — -z (3+1v3)/2-(1-iV3)/2 L iV3 = gemif3

and 2= =1.
=z (34iV3)/2—(14iV3)/2 | |
Thus because F(z1) = 0, F(2"”) = 2¢™/3, and F(z5) = oo, this arc of the circle centered at ¢ maps to the ray
arg z = /3. Thus we have that

f(D)={z€C:n/3 <argz < 2m/3}.
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2.7 Schwarz Lemma

Lemma 2.7.1. Let f : D — D be a holomorphic map such that f(0) = 0. Then it follows that |f(2)| < |z| for z € D
and |f'(0)| < 1.

Corollary 2.7.2. Furthermore, under the same conditions, if |f(z)| = |z| for some z # 0 or if |f'(0)] = 1, then
f(z) = az for some z € ID.

(2) Example Problems: Schwarz Lemma

Example 2.7.3 (Spring 2022, Problem 4). Let f : D — D be a holomorphic function with two fixed points. Show
that f is precisely the identity map.

Solution. For the sake of notation let f(a) = a and f(b) = b for some distinct a,b € D. Now we define the

biholomorphic map
z—a

g:D—D such that 2 —.
1—az

Note that the inverse map is precisely

g :D—>D such that Z

1+az’
Now we define the holomorphic map h = go fog™:D — D. Note h(0) = g(f(g1(0))) = g(f(a)) = g(a) = 0 and

" (1b__5b) —9 (f (g_l (117__;))) =9(f() = 9(b) = 1b—_aab'

Thus by the corollary to Schwarz lemma, we know that h(z) = ¢z for some ¢ € 9D. But since

b—a b—a
h(l—ab>_1—ab and = a#b,

we also know that h(z) = z. Thus,

z=h(2) =g(f(g7'(2)) = g(z) = 9(flg7 " (9(2) = 9(f(2)) = z=g""(9(2)) =g (9(f(2))) = f(2).

Example 2.7.4 (Spring 2021, Problem 2). Let f : H — C be a holomorphic function such that |[f(z)| < 1 and
f(i) = 0. Prove that for z € H that

z—1
z+1

[f(2)] <

Solution. Let us define the Cayley transform

z—1
2+

g:H—D such that Z >

Note that g(i) = 0, so g71(0) = i. Now let h = fog~!: D — C. Note that as before |h(z)| < 1 and also h(0) = 0.
By Schwarz lemma we have that |h(z)| < |z| for z € D. By extension we have that for z € H it follows that

z—1
z+1

1F(2) = (g (9(2)] = [(g(2)] < lg(2)] =
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2.8 Maximum Modulus Principle

Theorem 2.8.1. Suppose that Q) C C is a non-empty open connected subset and that f is a non-constant holomorphic
function on Q. It then follows that f cannot attain a maximum in €.

Corollary 2.8.2. Suppose that Q@ C C is a non-empty open connected subsel with compact closure Q. If f is
holomorphic on Q and continuous on §2, then

sup [f(2)] < sup [f(z)].
z€EQ Z€00Q

(4) Example Problems: Maximum Modulus Principle

Example 2.8.3 (Spring 2023, Problem 4). Let S:={z =2 +iy: -1 <z < 1} and let f: S — C be a bounded
continuous function that is holomorphic on the interior of the strip S. For —1 <z < 1let M(x) := sup,cg | f(z +iy)|.

e Suppose M (1), M(—1) < 1. Prove that |f(z)| <1 for any z € S.

e Suppose M (1), M(—1) are arbitrary. Prove that M(0)2 < M(—1)- M(1) by deducing it from part 1 of this
problem.

Solution. Let € > 0 and let )
Fe(z) = f(z)- €7
Since f(z) is bounded there exists M such that |f(z)| < M for all z € S. Now note that
[Fe(2)] = [ f(2)] - exp(Re(e2?)) = [ f(2)] - exp(e (2° — y?)) < M -exp(e (1 —y?)).

Thus it follows that as |z| — co we have that |F.(z)] — 0. Let Sy, = {z € S: |Jm(z)| < y} and note that because of
this limiting condition, it follows that for every € > 0 there exists y sufficiently large such that sup,cgg, [F2(2)] <1
and |Fz(z)] <1 for all z € S\'S,. Thus by the maximum modulus principle we have that

sup |F.(z)| < sup |F:(2)| < 1.
ZESy z€0S,

Since |F.(z)| < 1 for all z € S\'S, also, we have that sup,cg |F:(2)| < 1. Now when € — 0 we have sup, s |f(2)] < 1.
Thus for all z € S we have that |f(z)] < 1.

SECOND PART?7??

Example 2.8.4 (Fall 2023, Problem 4). Let 21, 29, ..., 2z, be points on the unit circle in the complex plane. Prove
that there exists a point z on the unit circle such that

n
Iz =zl =1
k=1

Solution. Let us define the holomorphic function f(z) = [[;_, z — 2 on D and note that it is continuous on D.
Note that f(0) = 1. So, by the maximum modulus principle, we have that

1 <sup[f(2)| < sup |f(2)].
zeD z€0D
So there exists zp € D such that 1 < |f(z0)|. Now note that |f(z1)| = 0. Since f is continuous when parametrized
over the unit circle, by the IVT we have that there must exist a point z € 9D such that |f(z)| = 1 as desired.

Example 2.8.5 (Fall 2021, Problem 3). Let Dy = {z € C: 0 < |z| < 1} and f : Dy — C be holomorphic on Dy and
satisfy | f(2)] <log(1/|z]) for all z € Dy. Prove that f =0 on D

Solution. Let g(z) = zf(z) and note that |g(z)| < |z|1log(1/|z|). Note

. T (-1 L) ¥
Py elosl/e) = S e = M e T 0

Thus we have that |g(z)| — 0 as |z| — 0. Thus by the maximum modulus principle g(z) must attain its maximum
on 0Dy, but is necessarily 0 on 9Dy. So we have that g(z) = 0 on Dg as thus f(z) =0 on Dj.
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Example 2.8.6 (August 2020, Problem 5). Let f be holomorphic on a neighborhood of the closed unit disc centered
at the origin. Assume that |f(z)| = 1 if |z| = 1, and is not a constant on the disc. Prove that there exist a positive
integer k, points v, . .., @, in the open unit disc, positive integers my, ..., m,, and a complex number 8 with |5 =1
such that

mg

=0 H (1 — akz> for all z in the unit disc.

Solution. We know that f must have finitely many zeros on the disk by the identity theorem. So let aq,...,a, be
the zeros of f with multiplicities myq, ..., m,. First note that when |z| = 1 we have

2 S P S et T T et T 12 — @z — a4 lal?
|B(z; ag, mi)|” = B(z; ax, my) B(2; a, my) = — i =

1 —agz 1—apz 1— apz — apz + |agl® - |2)°
o 2\ Mk

(1= arZ —agz + |ag _1

l—akz—ﬁz—ﬂak\z )

Thus |B(z; ax, mi)|* = 1 and so |B(z; ax, mz)| = 1 when |z| = 1. Now note that by extension

=1 when |z| = 1.

‘H (2 ak,mk)

Additionally, this function must never vanish on D by construction. Thus by the minimum modulus principle, this
function must be a constant of absolute value 1, denote this constant . Thus

/() =B = f(2) BﬁB(Z;ak,mk BH(Z_G )mk-

[Ti, B(z; ak, ms) P 1—agz
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2.9 Mean Value Theorem

Theorem 2.9.1. If u is a harmonic function on U and B(a,r) C U, then we have that

1 2 )
u(a) = %/0 u(a +re') dh.

(1) Example Problems: Mean Value Theorem

Example 2.9.2 (Spring 2022, Problem 3). Suppose f(z) is an entire function such that [ 1F(2) dedy < oo.
Show that f is constant.

Solution. First we will show a corollary of the MVT:

1
= dx dy.
a) 3 //B(aﬂ u(x,y) dedy

Let a = 2’ + i3’ and note using Jacobians we have

27 .
cos —r'sind ,
—2 //B(ar) (x,y dacdy—mﬁQ/ / ' +71'cosf,y +r'sinf) - det(sin@ r'cos@) do dr'.

Simplifying and rearranging we have

27
2// xydxdy——/ / w(x’ 4+ 1" cos B,y +r'sinf)dl dr'.
r B(a,r)

Applying the MVT this simplifies to

WQ//B(M (,y) dzdy = ()/ v dr' = u(a).

|#/(2)|? is a subharmonic function; thus, for all a € C and r > 0 we have

o i [ e

Letting r — oo since the integral must be finite, we have that the r =2 term forces the inequality | f’ (a)|2 < 0 which
implies that f’(a) = 0 everywhere. Thus the function is constant.
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(2) Other Problems
Example 2.9.3 (Spring 2023, Problem 5). Suppose that f is an entire function satisfying the functional equation

f(F2) =cf(z)+2(1-¢)
for some fixed ¢ # 1. Show that f(z) is linear, you may use Picard’s theorem.

Solution. Note that by taking the derivative of both sides

ff@E) =cflz)+z(1-c) = f() f(f(z)) =cf' () +1—c

If there exists z such that f/(z) = 0, then by the above we have that ¢ = 1 which immediately yields a contradiction.
Thus f is non-constant. Thus by Picard’s little theorem we know that f(C) is either C or C\ {a} for some a € C.
However, by the uniformization theorem, we know that there does not exist any conformal map C — C\ {a}. Thus
f(C) = C, and we know the automorphisms of C are of the form az + b.

Example 2.9.4 (Spring 2021, Problem 4). Let f : D — C be holomorphic and suppose there is an open set U whose
closure U C D is in the disk, such that f is injective on U. Must there exist an open set W with U ¢ W C D such
that f is injective on W ? If so, prove your answer, and if not, provide a counterexample. (Here D is the unit disk,
D={zeC:|z| <1}.

Solution. This is false, consider the following counterexample. Let a € D, now let f(z) = (2 — a)? and choose the
domain U = {z € D: |z| < |a|}. Now note that

0=f'(z2)=22—2a = z=a.

Thus f is injective on U since a ¢ U; but, f is not injective on U since a € U. So for U ¢ W C D, f cannot be
injective on W because a € W.
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