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1 Multivariable Calculus

1.1 Green’s Theorem

Theorem 1.1.1. Let C be a piecewise smooth, simple closed curve in the plane and let D be the region bounded by
C. Now if M and N are defined on an open region containing D then we have that∮

C

M dx+N dy =

∫∫
D

(
∂N

∂x
− ∂M

∂y

)
dx dy.

Remark. Note that Green’s theorem follows as a corollary to the generalized Stoke’s theorem.

(1) Example Problems: Green’s Theorem

Example 1.1.2 (Fall 2023, Problem 1). Use Green’s theorem to evaluate the integral∮
C

√
1 + ex2 dx+ 4xy dy

where C is the boundary of the triangle with vertices (0, 0), (1, 0), and (1, 3) with the standard orientation.

Solution. Note that
∂

∂x
(4xy) = 4y and

∂

∂y

√
1 + ex2 = 0.

Thus by Green’s theorem we have that∮
C

√
1 + ex2 dx+ 4xy dy =

∫ 1

0

∫ 3x

0

4y dy dx =

∫ 1

0

(
2y2
∣∣3x
y=0

)
dx =

∫ 1

0

18x2 dx = 6x3
∣∣1
x=0

= 6.

2



1.2 Jacobian Matrix: Change of Variables

Lemma 1.2.1. Let D be a region bounded by a piecewise smooth, simple closed curve in the plane. Let f , g, and h
be continuous functions, we have that∫∫

D

f(x, y) dx dy =

∫∫
D

f(g(x′, y′), h(x′, y′)) · det
(
∂g/∂x′ ∂g/∂y′

∂h/∂x′ ∂h/∂y′

)
dx′ dy′.

This generalizes to higher dimensions in the natural way.

(1) Example Problems: Jacobian Matrix

Example 1.2.2 (Spring 2021, Problem 5). Let R be the parallelogram (0, 0), (1, 1), (3, 0), and (2,−1). Evaluate∫∫
R

(x+ 2y)2ex−y dA.

Solution. We would like to apply the transformation(
x′

y′

)
=

(
1 2
1 −1

)(
x
y

)
or alternatively − 1

3

(
−1 −2
−1 1

)(
x′

y′

)
=

(
x
y

)
.

Thus we have∫∫
R

(x+ 2y)2ex−y dA = −1

3

∫ 3

0

∫ 3

0

(x′)2ey
′
· det

(
−1 −2
−1 1

)
dx′ dy′ =

∫ 3

0

∫ 3

0

(x′)2ey
′
dx′ dy′.

This is now a very straight-forward integral to evaluate.∫ 3

0

∫ 3

0

(x′)2ey
′
dx′ dy′ =

∫ 3

0

ey
′

(
x3

3

∣∣∣∣3
x=0

)
dy′ = 9

∫ 3

0

ey
′
dy′ = 9

(
ey

′ ∣∣3
y=0

)
= 9 (e3 − 1).
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2 Complex Analysis

2.1 Harmonic Functions

Definition 2.1.1. A function f is harmonic if it satisfies the following equation

∂2f

∂x2
+

∂2f

∂y2
= 0.

Lemma 2.1.2. If a function u(x, y) is harmonic, then there exists a harmonic conjugate of u denoted v(x, y) such
that f(z) = u(x, y) + i · v(x, y) is holomorphic in z = x+ i · y.

Corollary 2.1.3. A function u is harmonic if and only if there exists a holomorphic function f such that u = Re(f).

(1) Example Problems: Harmonic Functions

Example 2.1.4 (Fall 2022, Problem 1). Show that u(x, y) = ln
(
x2 + y2

)
is a harmonic function in C \ {0}. Find a

conjugate harmonic function of u(x, y) in C \ {x : x ≤ 0}. Show that it does not have a conjugate harmonic function
in C \ {0}.

Solution. Recall that a harmonic function f satisfies the equation

∂2f

∂x2
+

∂2f

∂2y
= 0.

So, note that
∂u

∂x
=

2x

x2 + y2
and

∂2u

∂x2
=

2(x2 + y2)− 2x(2x)

(x2 + y2)2
=

2(y2 − x2)

(x2 + y2)2
.

And similarly,
∂u

∂y
=

2y

x2 + y2
and

∂2u

∂y2
=

2(x2 + y2)− 2y(2y)

(x2 + y2)2
=

2(x2 − y2)

(x2 + y2)2
.

So trivially we have that ∂2u/∂x2 + ∂2u/∂y2 = 0 wherever this function is defined. Noting that u(z) = u(x, y) =
ln
(
x2 + y2

)
= 2 ln |z|, it is clear that this function is defined on C \ {0}.

Since u is harmonic we know there exists a holomorphic function f such that u = Re(f). There is the obvious
choice:

f(z) = 2Log(z) = 2 ln |z|+ 2iArg(z)).

Indeed u = Re(f). Taking the imaginary part yields the harmonic conjugate

v(x, y) = 2Arg(x+ iy) = 2 arctan(y/x).

Note that this function is continuous on the right half plane but not C \ {0}; hence this harmonic conjugate is valid
for the right half plane and not C \ {0}.

(Incomplete still)
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2.2 Power Series

Definition 2.2.1. Given a power series
∑

1≤n anz
n there exists a number 0 ≤ R ≤ ∞ such that for all |z| < R the

series converges absolutely, and for all |z| > R the series diverges. This R is the radius of convergence of the power
series

∑
1≤n anz

n.

Theorem 2.2.2. We have that the radius of convergence satisfies

1/R = lim sup
n→∞

|an|1/n.

(2) Example Problems: Power Series

Example 2.2.3 (Spring 2024, Problem 2). Let

F (z) =

∞∑
n=1

zn

1− zn
.

Find its power series
∑∞

k=1 akz
k and find its radius of convergence.

Solution. Working over C[[z]], finding the power series becomes trivial.

F (z) =
∑
1≤n

zn

1− zn
=
∑
1≤n

∑
1≤k

zkn =
∑
1≤n

∑
d|n

zn =
∑
1≤n

σ0(n) z
n.

Now note that 2 ≤ σ0(n) ≤ n for all n > 1 (trivially). Thus we have that

lim sup
n→∞

21/n ≤ lim sup
n→∞

|an|1/n ≤ lim sup
n→∞

n1/n.

Note that (
lim

n→∞
21/n = lim

n→∞
n1/n = 1

)
=⇒

(
lim sup
n→∞

21/n = lim sup
n→∞

n1/n = 1

)
.

Thus 1/R = lim supn→∞ |an|1/n = 1 and so R = 1.

Example 2.2.4 (Stein-Shakarchi, Chapter 1 Problem 16abc). Find the radius of convergence for
∑

0≤n anz
n when

• an = log2 n

• an = n!

• an = n2/(4n + 3n)

Solution.

• Starting with an = log2 n. Note that

lim
n→∞

(log2 n)1/n = lim
n→∞

(log n)2/n = exp

(
2 lim
n→∞

log log n

n

)
= exp

(
2 lim
n→∞

1

n lnn

)
= 1.

Thus, 1/R = lim supn→∞(log2 n)1/n = 1 and so R = 1.

• Now working with an = n!, we note that by Sterling’s approximation log n! = n log n − n + O(log n). So we
have

lim
n→∞

(n!)1/n = lim
n→∞

exp

(
log n!

n

)
= lim

n→∞
exp(logn− 1) = ∞.

Thus 1/R = lim supn→∞(n!)1/n = ∞ and so R = 0.

• Now working with an = n2/(4n + 3n), note that for n ≥ 0 we have 4n ≤ 4n + 3n ≤ 2 · 4n. Thus it follows,

1

4
=

1

4
lim
n→∞

(n/2)2/n ≤ lim
n→∞

(
n2

4n + 3n

)1/n

≤ 1

4
lim
n→∞

n2/n =
1

4
.

Thus 1/R = lim supn→∞(n2/(4n + 3n))1/n = 1/4 and so R = 4.
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Example 2.2.5 (Spring 2024, Problem 5). Let

f(z) =

∞∑
n=1

1

n8
z3

n

which has convergence radius 1 . (Thus f(z) is a well defined holomorphic function over the unit disk ∆ := {z ∈ C :
|z| < 1}.)

• Prove that f(z) does not admit a holomorphic extension to a neighborhood of 1 in C. Namely, there do not exist
a neighborhood U of 1 in the complex plane C and a holomorphic function g over U such that f |Un∆ = g|U∩∆.

• Further show that the unit disk is the natural defining domain of f(z). Namely, there do not exit a domain Ω
strictly larger than the unit disk and a holomorphic function F defined over Ω such that the restriction of F
to the unit disk is f(z).

Solution. Suppose there exists a holomorphic extension of f to a neighborhood of 1. Then we know that f ′ is also
holomorphic in a neighborhood of 1 as well. Note that

f ′(z) =

∞∑
n=1

3n

n8
z3

n−1.

Now let z = reiθ where θ = 2πk/3N where 0 ≤ k < 3N . Thus

f ′(z) =

∞∑
n=1

3n

n8

(
r3

n−1 exp
(
2πik(3n − 1)/3N

))
= exp

(
−2πik/3N

) ∞∑
n=1

3n

n8

(
r3

n−1 exp
(
2πik · 3n−N

))
.

But now we can rearrange as follows:

exp
(
2πik/3N

)
f ′(z) =

N−1∑
n=1

3n

n8

(
r3

n−1 exp
(
2πik · 3n−N

))
+

∞∑
n=N

3n

n8
r3

n−1.

Now note that

lim
r→1−

∞∑
n=N

3n

n8
r3

n−1 = ∞ and

∣∣∣∣∣
N−1∑
n=1

3n

n8

(
r3

n−1 exp
(
2πik · 3n−N

))∣∣∣∣∣ < ∞.

Thus by reverse triangle inequality, for r sufficiently large we have that

∞∑
n=N

3n

n8
r3

n−1 −

∣∣∣∣∣
N−1∑
n=1

3n

n8

(
r3

n−1 exp
(
2πik · 3n−N

))∣∣∣∣∣ ≤ |f ′(z)|.

But note that the LHS goes to infinity as r goes to 1. Thus limr→1− |f ′(z)| = ∞ as well.
Now note that if we choose k = 0 and N = 0, then z = r. So limr→1− |f ′(z)| = ∞ implies that f ′ can not

be holomorphic in any neighborhood of 1, because f ′ is not holomorphic at 1. Contradiction, thus f can not be
holomorphic in a neighborhood of 1.

Suppose there exists Ω ⊃ D such that there exists a holomorphic extension of f to Ω. Then we know that f ′ is
also holomorphic on Ω as well. Because our choices of z are dense on ∂D, if we choose any Ω ⊃ D, it must contain
some z in our dense set. So limr→1− |f ′(z)| = ∞ implies that f ′ can not be holomorphic in any neighborhood of
z, because f ′ is not holomorphic at z. Thus f ′ can not be holomorphic on Ω. Contradiction, thus f can not be
holomorphic on Ω.
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Example 2.2.6 (Stein-Shakarchi, Chapter 1 Problem 19). Prove the following:

• The power series
∑

nzn does not converge at any point on the unit circle.

• The power series
∑

zn/n2 converges at every point on the unit circle.

• The power series
∑

zn/n converges at every point on the unit circle except for z = 1.

Solution.

• In the case of
∑

nzn note that when |z| = 1 we have limn→∞ |nzn| = limn→∞ n|z|n = limn→∞ n = ∞. So the
sum can not converge.

• Now in the case of
∑

zn/n2 note that when |z| = 1 we have∑∣∣zn/n2
∣∣ =∑ |z|n/n2 =

∑
n−2 = π2/6.

Since the sum converges absolutely, the original series must also converge.

• Note that for all z ̸= 1 and N ∈ N that ∣∣∣∣∣
N∑

n=1

zn

∣∣∣∣∣ =
∣∣∣∣1− zN

1− z

∣∣∣∣ ≤ 2

|1− z|
.

So it follows from summation by parts that

N∑
n=1

zn

n
=

1

N

N∑
n=1

zn +

N−1∑
k=1

(
1

k2 + k

) k∑
n=1

zn.

Now note that

0 ≤

∣∣∣∣∣ limN→∞

1

N

N∑
n=1

zn

∣∣∣∣∣ ≤ lim
N→∞

1

N

∣∣∣∣∣
N∑

n=1

zn

∣∣∣∣∣ ≤ lim
N→∞

2

N |1− z|
= 0 =⇒ lim

N→∞

1

N

N∑
n=1

zn = 0.

Thus we have that
∞∑

n=1

zn

n
=

∞∑
k=1

(
1

k2 + k

) k∑
n=1

zn.

But note that testing absolute convergence of the right hand side we have

∞∑
k=1

∣∣∣∣∣
(

1

k2 + k

) k∑
n=1

zn

∣∣∣∣∣ ≤ 2

|1− z|

∞∑
k=1

1

k2 + k
≤ 2

|1− z|

∞∑
k=1

k−2 =
π2

3 |1− z|
.

Since the series converges absolutely the original series converges for all z ̸= 1.

7



2.3 Rouche’s Theorem

Theorem 2.3.1. For any two holomorphic functions f and g on some region K with closed contour ∂K, it follows
that if |g(z)| < |f(z)| on ∂K then f and f + g have the same number of zeros inside K.

(6) Example Problems: Rouche’s Theorem

Example 2.3.2 (Spring 2024, Problem 3). Find the number of roots of z4 − 6z + 3 = 0 such that 1 < |z| < 2.

Solution. Note that when |z| = 2 we have that

|−6z| = 6|z| = 12 < 13 =
∣∣∣|z|4 − 3

∣∣∣ ≤ ∣∣z4 + 3
∣∣.

Thus by Rouche’s theorem, z4 +3 = 0 and z4 − 6z+3 = 0 have the same number of roots with |z| < 2. Noting that

z4 + 3 = (z2 + i
√
3)(z2 − i

√
3) = (z − 4

√
3)(z +

4
√
3)(z − i

4
√
3)(z + i

4
√
3)

and that
∣∣ 4
√
3
∣∣ < 2 gives us that z4 − 6z + 3 has four roots such that |z| < 2.

Note that when |z| = 1 we have that∣∣z4∣∣ = |z|4 = 1 < 3 = |6|z| − 3| ≤ |−6z + 3|.

Thus by Rouche’s theorem −6z+3 = 0 and z4−6z+3 = 0 have the same number of roots with |z| < 1. Noting that

−6z + 3 = −6(z − 1/2)

and that |1/2| < 1 gives us that z4 − 6z + 3 has one root such that |z| < 1.
Thus there are three roots of z4 − 6z + 3 = 0 such that 1 < |z| < |2|.

Example 2.3.3 (Fall 2021, Problem 1). Fix 0 < R < π/2. Prove that for sufficiently large n the polynomial

Pn(z) = 1 +
z2

2!
+

z4

4!
+ . . .+

z2n

(2n)!
= 0

has no roots such that |z| < R.

Solution. Note that

cos(iz) = 1 +
z2

2!
+

z4

4!
+ . . . =

1

2

(
ez + e−z

)
.

Now fix 0 < R < π/2 and let ε > 0 be such that R + ε < π/2 also. Since cos(iz) has zeros at ±πi/2,±3πi/2, . . .
there exists M such that 0 < M < |cos(iz)| for |z| < R+ ε. Now note that

|Pn(z)− cos(iz)| =
∣∣∣∣− z2n+2

(2n+ 2)!
− z2n+4

(2n+ 4)!
− z2n+6

(2n+ 6)!
+ · · ·

∣∣∣∣
≤ |z|2n

(2n)!

(
|z|2

(2n+ 1)(2n+ 2)
+

|z|4

(2n+ 1) · · · (2n+ 4)
+

|z|6

(2n+ 1) · · · (2n+ 6)
+ · · ·

)

≤ |z|2n

(2n)!

(
1 +

|z|2

2!
+

|z|4

4!
+

|z|6

6!
+ · · ·

)
=

|z|2n

(2n)!

(
exp(|z|) + exp(−|z|)

2

)
Thus if |z| = R then we have

|Pn(z)− cos(iz)| ≤ R2n

(2n)!

(
eR + e−R

2

)
.

Noting that the right hand side of the above goes to 0 pointwise in terms of R as n → ∞ , there exists some N such
that for all n > N and |z| = R we have

|Pn(z)− cos(iz)| ≤ R2n

(2n)!

(
eR + e−R

2

)
< M < |cos(iz)|.

Now by Rouche’s theorem we know that Pn(z) = 0 and cos(iz) = 0 have the same number of roots such that |z| < R.
Thus there exists sufficiently large n such that Pn(z) = 0 has no roots such that |z| < R.
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Example 2.3.4 (Spring 2021, Problem 1). Prove that all five roots of 2z5 + 8z − 1 = 0 are such that |z| < 2 but
only one root is such that |z| < 1.

Solution. Note that when |z| = 2 we have that

|8z| = 8|z| = 16 < 31 =
∣∣∣2|z|5 − 1

∣∣∣ ≤ ∣∣2z5 − 1
∣∣.

Thus by Rouche’s theorem, 2z5 − 1 = 0 and 2z5 +8z− 1 = 0 have the same number of roots with |z| < 2. Note that

2z5 − 1 = (z − 5
√
1/2)(z − e2πi/5 5

√
1/2)(z − e4πi/5 5

√
1/2)(z − e6πi/5 5

√
1/2)(z − e8πi/5 5

√
1/2)

and that
∣∣∣ 5
√
1/2
∣∣∣ < 2 gives us that 2z5 + 8z − 1 has five roots such that |z| < 2.

Note that when |z| = 1 we have that∣∣2z5∣∣ = 2|z|5 = 2 < 7 = |8|z| − 1| ≤ |8z − 1|.

Thus by Rouche’s theorem, 8z−1 = 0 and 2z5+8z−1 = 0 have the same number of roots with |z| < 1. Noting that

8z − 1 = 8(z − 1/8)

and that |1/8| < 1 gives us that 2z5 + 8z − 1 has one root such that |z| < 1.

Example 2.3.5 (Spring 2023, Problem 2). Fix λ ∈ C such that it is purely imaginary. Prove that z = λ − ez
2

/3
has exactly one solution in the strip S = {z ∈ C : |Re(z)| < 1}.

Solution. Let x = Re(z) and y = Im(z) and note that for z ∈ S we have that |x| ≤ 1. We have that∣∣∣ez2

/3
∣∣∣ = eRe(z2)/3 = ex

2−y2

/3 = ex
2

e−y2

/3 ≤ ex
2

/3 ≤ e/3 < 1.

Now let Rr be the open rectangle with opposite corners (−1, λ − r) and (1, λ + r). Now note that for r ≥ 1 for
any z ∈ ∂Rr we have that |z − λ| ≥ 1. Thus for all r ≥ 1 and z ∈ ∂Rr we have∣∣∣ez2

/3
∣∣∣ < 1 ≤ |z − λ|.

Thus by Rouche’s theorem, z−λ = 0 and z−λ+ez
2

/3 = 0 have the same number of roots in Rr. Thus z−λ+ez
2

/3
has one root in Rr for all r ≥ 1. Noting that

R1 ⊂ R2 ⊂ R3 ⊂ . . . ⊂ S and
⋃
1≤r

Rr = S

gives us that z − λ+ ez
2

/3 = 0 has one solution in S.

Example 2.3.6 (Spring 2022, Problem 2). Show that 2 + z2 − eiz = 0 has exactly one solution in the upper-half
plane.

Solution. Let x = Re(z) and y = Im(z) and note that for z ∈ H we have that y > 0. Note that∣∣−eiz
∣∣ = e−y < 1.

Now let Rr be the open rectangle with opposite corners (−r, 0) and (r, r). Now for any z ∈ C note that∣∣2 + x2 − y2
∣∣ ≤√(2 + x2 − y2)2 + (2xy)2 =

∣∣2 + z2
∣∣ and that

∣∣∣2− |z|2
∣∣∣ ≤ ∣∣2 + z2

∣∣.
Now let r ≥ 2. Then for any point z ∈ ∂Rr on the bottom edge we have −r ≤ x ≤ r and y = 0; so

2 ≤ 2 + x2 =
∣∣2 + x2 − 02

∣∣ ≤ ∣∣2 + z2
∣∣.

Now for any point z ∈ ∂Rr on any other edge we have |z| ≥ r; so

2 ≤ r2 − 2 ≤ |z|2 − 2 =
∣∣∣2− |z|2

∣∣∣ ≤ ∣∣2 + z2
∣∣.
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Thus when r ≥ 2 for every z ∈ Rr we have that 2 ≤
∣∣2 + z2

∣∣ and by extension
∣∣−eiz

∣∣ < 1 < 2 ≤
∣∣2 + z2

∣∣. So by
Rouche’s theorem we have that 2 + z2 = 0 and 2 + z2 − eiz = 0 have the same number of roots in Rr. Noting that
2 + z2 = (z − i

√
2)(z + i

√
2), we have that 2 + z2 − eiz has one root in Rr for all r ≥ 2. Noting that

R2 ⊂ R3 ⊂ R4 ⊂ . . . ⊂ H and
⋃
2≤r

Rr = H

gives us that 2 + z2 − eiz = 0 has one solution in H.

Example 2.3.7 (Fall 2020, Problem 2). Prove that if 1 < a < ∞ is a real number, then fa(z) = z+ a− ez has only
one zero in the left-half plane and that the zero is real.

Solution. Now let x = R(z) and y = Re(z) and note that for z ∈ iH we have that x < 0. Note that

|−ez| = −ex < 1.

Now let Rr be the open rectangle with opposite corners (−r,−r) and (0, r). Now note that by simple geometric
reasoning for any r ≥ 2a and z ∈ Rr we have that |z + a| ≥ a > 1. Thus for all r ≥ 2a and z ∈ Rr we have that

|−ez| < 1 < a ≤ |z + a|.

Thus by Rouche’s theorem, z + a = 0 and z + a− ez = 0 have the same number of roots in Rr. Thus z + a− ez has
one root in Rr for all r ≥ 2a. Noting that

R⌈2a⌉ ⊂ R⌈2a⌉+1 ⊂ R⌈2a⌉+2 ⊂ . . . ⊂ iH and
⋃

⌈2a⌉≤r

Rr = iH

gives us that z + a− ez = 0 has one solution in iH. Note that

fa(0) = 0 + a− e0 = a− 1 > 0 and fa(−a) = −a+ a− e−a = −e−a < 0.

Thus by the intermediate value theorem there exists at least one real zero of fa on the interval (−a, 0).
Since there exists one solution to z + a − ez = 0 in iH ⊃ (−a, 0) and there exists at least one solution to

z + a− ez = 0 on the interval (−a, 0), it follows that there exists one solution to z + a− ez = 0 in iH and it is real.
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2.4 Residue Theorem

Definition 2.4.1. We define the residue of as follows. Given a function f holomorphic in a neighborhood of a point
z0, we can write the Laurent expansion

f(z) =
∑
n∈Z

an(z − z0)
n and then Res(f, z0) = a−1.

Lemma 2.4.2. If f has an order n pole at z0 then

Res(f, z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
(z − z0)

nf(z).

Theorem 2.4.3. Let f be holomorphic on an open set containing a closed contour C and let P be the set points
inside C which are poles of f . Then we have that∮

C

f dz = 2πi
∑
z0∈P

Res(f, z0)

(8) Example Problems: Residue Theorem

Example 2.4.4 (Spring 2024, Problem 1). For a ̸= 0 evaluate∫ π

0

tan(t+ ai) dt.

Solution. Note that ∫ π

0

tan(t+ ai) dt =

∫ π

0

sin(t+ ai)

cos(t+ ai)
dt.

Recall the Weierstrass factorization of cos z

cos z =
∏
k ̸=0

(
1− 2z

π(2k − 1)

)
.

From this it follows that the poles of tan(t+ ai) are of order 1 and are located at ±kπ − ai where k is odd. Now
for a > 0 we define the contour C as the counterclockwise orientation of boundary of the rectangle with opposite
vertices (0, 0) and (π,−R) where 0 < a < R. Now we evaluate using the residue theorem∮

C

tan(z + ai) dz = 2πiRes(f, π/2− ai) = 2πi lim
z→(π/2−ai)

(z − π/2 + ai) tan(z + ai).

Note that this is an indeterminate form as

lim
z→(π/2−ai)

(z − π/2 + ai) tan(z + ai) = lim
z→(π/2−ai)

(z − π/2 + ai) sin(z + ai)

cos(z + ai)

with the denominator and numerator both going to 0. We apply L’Hopital’s rule to remedy this

= lim
z→(π/2−ai)

(z − π/2 + ai) cos(z + ai) + sin(z + ai)

− sin(z + ai)
=

0 · 0 + 1

−1
= −1.

Thus ∮
C

tan(z + ai) dz = −2πi.

Now note that tan(z) = tan(π + z). So, when 0 < a < R we have

−2πi =

∮
C

tan(z + ai) dz =

∫ −R

0

tan(ti+ ai) dt+

∫ π

0

tan(t−Ri+ ai) dt−
∫ −R

0

tan(π + ti+ ai) dt−
∫ π

0

tan(t+ ai) dt

=

∫ π

0

tan(t−Ri+ ai) dt−
∫ π

0

tan(t+ ai) dt.
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Thus when a > 0 and R = 2a we have by algebraic manipulation

−2πi =

∫ π

0

tan(t− ai) dt−
∫ π

0

tan(t+ ai) dt

= −
∫ −π

0

tan(−u− ai) du−
∫ π

0

tan(t+ ai) dt

=

∫ −π

0

tan(u+ ai) du−
∫ π

0

tan(t+ ai) dt

= −
∫ 0

−π

tan(u+ ai) du−
∫ π

0

tan(t+ ai) dt = −
∫ π

0

tan(t− π + ai) dt−
∫ π

0

tan(t+ ai) dt.

Now note that tan(z) = tan(π + z). So

−2πi = −2

∫ π

0

tan(t+ ai) dz =⇒
∫ π

0

tan(t+ ai) dt = πi.

Now for b < 0 and a = −b we have that∫ π

0

tan(t− bi) dt =

∫ π

0

tan(t+ ai) dt = πi.

But we have that

πi =

∫ π

0

tan(t− bi) = −
∫ −π

0

tan(−u− bi) du = −
∫ 0

−π

tan(u+ bi) du = −
∫ π

0

tan(t− π + bi) dt.

Now note that tan(z) = tan(π + z). So ∫ π

0

tan(t+ bi) = −πi.

Example 2.4.5 (Fall 2023, Problem 2). Assume ξ > 0 and compute∫
R

cos(2πxξ)

x2 + 1
dx.

Solution. Trivially the poles of
e2πizξ

z2 + 1

are located at ±i and are each of order 1. Let C be the counterclockwise orientation of the radius R upper-half
semicircle centered at 0. Now for R > 1 we have by the residue theorem that∮

C

e2πizξ

z2 + 1
dz = 2πiRes(f, i) = 2πi lim

z→i

e2πizξ

x+ i
= πe−2πξ.

Now let γ1 be the segment of C along the real axis and let γ2 be the semicircular part, preserving the orientation of
both contours from C. Now note that because sin is odd we have∫

γ1

e2πizξ

z2 + 1
dz =

∫ R

−R

cos(2πzξ) + i sin(2πzξ)

z2 + 1
dz =

∫ R

−R

cos(2πzξ)

z2 + 1
dz.

Now note that

0 ≤
∣∣∣∣∫

γ2

e2πizξ

z2 + 1
dz

∣∣∣∣ =
∣∣∣∣∣iR

∫ π

0

exp
(
2πiReiθξ

)
R2e2iθ + 1

eiθ dθ

∣∣∣∣∣ ≤ R

∫ π

0

∣∣∣∣∣exp
(
2πiReiθξ

)
R2e2iθ + 1

∣∣∣∣∣ dθ.
Now note that for R > 1 and 0 ≤ θ ≤ π we have∣∣exp(2πiReiθξ

)∣∣ = exp(−2πξR sin θ) ≤ 1 and that R2 − 1 ≤
∣∣R2e2iθ + 1

∣∣.
Thus we have that

0 ≤
∣∣∣∣∫

γ2

e2πizξ

z2 + 1
dz

∣∣∣∣ ≤ R

∫ π

0

∣∣∣∣∣exp
(
2πiReiθξ

)
R2e2iθ + 1

∣∣∣∣∣ dθ ≤ R

∫ π

0

dθ

R2 − 1
=

πR

R2 − 1
.
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Thus by the squeeze theorem, in the limit R → ∞ we have that the integral over γ2 vanishes. So,

πe−2πξ = lim
R→∞

∮
C

e2πizξ

z2 + 1
dz = lim

R→∞

∫ R

−R

cos(2πzξ)

z2
dz + lim

R→∞

∫
γ2

e2πizξ

z2 + 1
dz =

∫ ∞

−∞

cos(2πzξ)

z2 + 1
dz.

Example 2.4.6 (Spring 2023, Problem 1). Let a, b > 0 such that a ̸= b; compute the integral∫
R

cosx

(x2 + a2)(x2 + b2)
dx.

Solution. Trivially the poles of
eiz

(z2 + a2)(z2 + b2)

are located at ±ia and ±ib and they all have order 1. Let C be the counterclockwise orientation of the radius R
upper-half semicircle centered at 0. Now for R > max(a, b) we have by the residue theorem that∮

C

eiz

(z2 + a2)(z2 + b2)
dz = 2πiRes(f, ia) + 2πiRes(f, ib)

= 2πi lim
z→ia

eiz

(z + ia)(z2 + b2)
+ 2πi lim

z→ib

eiz

(z2 + a2)(z + ib)

=
πe−a

a (b2 − a2)
+

π e−b

b (a2 − b2)
=

π

a2 − b2

(
e−b

b
− e−a

a

)
.

Now let γ1 be the segment of C along the real axis and let γ2 be the semicircular part, preserving the orientation of
both contours from C. Now note that because sin is odd we have∫

γ1

eiz

(z2 + a2)(z2 + b2)
dz =

∫ R

−R

cos z + i sin z

(z2 + a2)(z2 + b2)
dz =

∫ R

−R

cos z

(z2 + a2)(z2 + b2)
dz.

Now note that

0 ≤
∣∣∣∣∫

γ2

eiz

(z2 + a2)(z2 + b2)
dz

∣∣∣∣ =
∣∣∣∣∣iR

∫ π

0

exp
(
iReiθ

)
(R2e2iθ + a2)(R2e2iθ + b2)

eiθ dθ

∣∣∣∣∣ ≤ R

∫ π

0

∣∣∣∣∣ exp
(
iReiθ

)
(R2e2iθ + a2)(R2e2iθ + b2)

∣∣∣∣∣ dθ.
Now note that for R > max(a, b) and 0 ≤ θ ≤ π we have∣∣exp(iReiθ

)∣∣ = exp(−R sin θ) ≤ 1 and that (R2 − a2)(R2 − b2) ≤
∣∣(R2e2iθ + a2)(R2e2iθ + b2)

∣∣.
Thus we have that

0 ≤
∣∣∣∣∫

γ2

eiz

(z2 + a2)(z2 + b2)
dz

∣∣∣∣ ≤ R

∫ π

0

∣∣∣∣∣ exp
(
iReiθ

)
(R2e2iθ + a2)(R2e2iθ + b2)

∣∣∣∣∣ dθ
≤ R

∫ π

0

dθ

(R2 − a2)(R2 − b2)
=

πR

(R2 − a2)(R2 − b2)
.

Thus by the squeeze theorem, in the limit R → ∞ we have that the integral over γ2 vanishes. So,

π

a2 − b2

(
e−b

b
− e−a

a

)
= lim

R→∞

∮
C

eiz

(z2 + a2)(z2 + b2)
dz

= lim
R→∞

∫
γ1

eiz

(z2 + a2)(z2 + b2)
dz + lim

R→∞

∫
γ2

eiz

(z2 + a2)(z2 + b2)
dz =

∫ ∞

−∞

cos z

(z2 + a2)(z2 + b2)
dz.

Example 2.4.7 (Fall 2022, Problem 2). Evaluate the integral∫
R

x2

x4 + 1
dx.
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Solution. Note that
z4 + 1 = (z − eπi/4)(z + eπi/4)(z − e3πi/4)(z + e3πi/4).

Thus z2/(z4 + 1) has poles at eπi/4, e3πi/4, e5πi/4, and e7πi/4 of order 1. Let C be the counterclockwise orientation
of the radius R upper-half semicircle centered at 0. Now for R > 1 we have by the residue theorem that∮

C

z2

z4 + 1
dz = 2πiRes(f, eπi/4) + 2πiRes(f, e3πi/4)

= 2πi lim
z→exp(πi/4)

z2

(z + eπi/4)(z − e3πi/4)(z + e3πi/4)

+ 2πi lim
z→exp(3πi/4)

z2

(z − eπi/4)(z + eπi/4)(z + e3πi/4)

= 2πi · i

(
√
2)(2eπi/4)(i

√
2)

+ 2πi · −i

(−
√
2)(i

√
2)(2e3πi/4)

=
πi

2eπi/4
+

πi

2e3πi/4
=

πi

2

(
e−πi/4 + e−3πi/4

)
=

π√
2

Now let γ1 be the segment of C along the real axis and let γ2 be the semicircular part, preserving the orientation of
both contours from C. Now note that ∫

γ1

z2

z4 + 1
dz =

∫ R

−R

z2

z4 + 1
dz.

Additionally, note that

0 ≤
∣∣∣∣∫

γ2

z2

z4 + 1
dz

∣∣∣∣ = ∣∣∣∣iR ∫ π

0

R2e2iθ

R4e4iθ + 1
eiθ dθ

∣∣∣∣ ≤ R

∫ π

0

R2

|R4e4iθ + 1|
dθ.

Now note that for R > 1 we have that

R4 − 1 =
∣∣R4 − 1

∣∣ ≤ ∣∣R4e4iθ + 1
∣∣.

Thus,

0 ≤
∣∣∣∣∫

γ2

z2

z4 + 1
dz

∣∣∣∣ ≤ R

∫ π

0

R2

|R4e4iθ + 1|
dθ ≤ R

∫ π

0

R2

R4 − 1
dθ =

πR3

R4 − 1
.

Thus by the squeeze theorem, in the limit R → ∞ we have that the integral over γ2 vanishes. So,

π√
2
= lim

R→∞

∮
C

z2

z4 + 1
dz = lim

R→∞

∫
γ1

z2

z4 + 1
dz + lim

R→∞

∫
γ2

z2

z4 + 1
dz =

∫ ∞

−∞

z2

z4 + 1
dz.

Example 2.4.8 (Spring 2022, Problem 1). Compute the integral∫
R

cos2(x)

x2 + 1
dx.

Solution. Firstly, recall the identity 2 cos2(z) = 1 + cos(2z). Thus∫
R

cos2(x)

x2 + 1
dx =

1

2

∫
R

1

x2 + 1
dx+

1

2

∫
R

cos(2x)

x2 + 1
dx.

Using our solution to Example 2.4.5 we know that∫
R

cos(2x)

x2 + 1
dx =

π

e2
=⇒

∫
R

cos2(x)

x2 + 1
dx =

1

2

∫
R

1

x2 + 1
dx+

π

2e2
.

Let γ be the counterclockwise oriented upper-half circle centered at 0 with radius R. Noting x2 +1 = (x− i)(x+ i),
by the residue theorem we know that for R > 1 we have∫

γ

dz

z2 + 1
= 2πiRes(f, i) = 2πi lim

z→i

1

z + i
= π.
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Now let γ′ be the arc portion of γ. We parameterize this with z = Reiθ and dz = iReiθ dθ where 0 ≤ θ ≤ π. Thus∫
γ′

dz

z2 + 1
=

∫ π

0

iReiθ

R2e2iθ + 1
dθ.

Now note that ∣∣∣∣∫
γ′

dz

z2 + 1

∣∣∣∣ = ∣∣∣∣∫ π

0

iReiθ

R2e2iθ + 1
dθ

∣∣∣∣ ≤ ∫ π

0

∣∣∣∣ iReiθ

R2e2iθ + 1

∣∣∣∣ dθ = R

∫ π

0

1

|R2e2iθ + 1|
dθ.

But note that for R > 1 we have R2 − 1 =
∣∣R2 − 1

∣∣ = ∣∣∣∣R2e2iθ
∣∣− 1

∣∣ ≤ ∣∣R2e2iθ + 1
∣∣. Thus∣∣∣∣∫

γ′

dz

z2 + 1

∣∣∣∣ ≤ R

∫ π

0

1

|R2e2iθ + 1|
dθ ≤ R

∫ π

0

1

R2 − 1
dθ =

πR

R2 − 1
.

Note that in the limit R → ∞, this integral vanishes. Thus becuase both of the following limits exist, we have∫
R

dz

z2 + 1
= lim

R→∞

(∫
γ

dz

z2 + 1
−
∫
γ′

dz

z2 + 1

)
= lim

R→∞

∫
γ

dz

z2 + 1
− lim

R→∞

∫
γ′

dz

z2 + 1
= π − 0 = π.

So we have that ∫
R

cos2(x)

x2 + 1
dx =

1

2

∫
R

dx

x2 + 1
+

π

2e2
=

π

2

(
1 + e−2

)
.

Example 2.4.9 (Fall 2021, Problem 2). For n ≥ 2 explicitly compute∫
R

xn

1 + x2n
dx.

Solution. Note that
1 + x2n = (x− eiπ/(2n))(x− e3iπ/(2n)) . . . (x− e(2n−1) iπ/(2n)).

Let γ be the counterclockwise oriented upper-half circle contour centered at 0 with radius R. Note that by the
resiude theorem, for R > 1 we have∫

γ

zn

1 + z2n
dz = 2πi

n∑
k=1

Res(f, e(2k−1) iπ/(2n)).

Now note that if z0 = e(2k−1) iπ/(2n) we have that z2n0 = −1. Now we evaluate the residue in the general case.

Res(f, z0) = lim
z→z0

(z − z0) z
n

1 + z2n
= lim

z→z0

zn+1 − z0z
n

1 + z2n
= lim

z→z0

(n+ 1) zn − nz0z
n−1

2nz2n−1
=

zn+1
0

2nz2n0
= −zn+1

0

2n
.

Thus we have that∫
γ

zn

1 + z2n
dz = −πi

n

n∑
k=1

exp

(
(2k − 1)(n+ 1)πi

2n

)
= −π

n

n∑
k=1

exp
(
πik (1 + n−1)

)
.

Now let γ′ be the arc portion of the contour γ. Now we parametrize z = Reiθ and dz = iReiθ dθ and note∫
γ′

zn

1 + z2n
dz =

∫ π

0

Rneinθ

1 +R2ne2inθ
iReiθdθ.

Now note that ∣∣∣∣∫
γ′

zn

1 + z2n
dz

∣∣∣∣ = ∣∣∣∣∫ π

0

Rneinθ

1 +R2ne2inθ
iReiθdθ

∣∣∣∣ ≤ Rn+1

∫ π

0

dθ

|1 +R2ne2inθ|
.

But now note that for R > 1 we have that

R2n − 1 =
∣∣R2n − 1

∣∣ = ∣∣∣∣R2ne2inθ
∣∣− 1

∣∣ ≤ ∣∣1 +R2ne2inθ
∣∣.

Thus ∣∣∣∣∫
γ′

zn

1 + z2n
dz

∣∣∣∣ ≤ Rn+1

∫ π

0

dθ

|1 +R2ne2inθ|
≤ Rn+1

∫ π

0

dθ

R2n − 1
=

Rn+1

R2n − 1
.
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Note that when n ≥ 2 the right hand side goes to 0 in the limit R → ∞. Thus because both limits exist, we have∫
R

zn

1 + z2n
dz = lim

R→∞

(∫
γ

zn

1 + z2n
dz −

∫
γ′

zn

1 + z2n
dz

)
= lim

R→∞

∫
γ

zn

1 + z2n
dz − lim

R→∞

∫
γ′

zn

1 + z2n
dz = −π

n

n∑
k=1

exp
(
πik(1 + n−1)

)
− 0 = −π

n

n∑
k=1

exp
(
πik(1 + n−1)

)
.

(Unsure where to go from here)

Example 2.4.10 (Spring 2021, Problem 3). Evaluate the integral∫
R

cosx

x4 − (π/2)4
dx.

Solution. Let γ be the semicircular contour centered at 0 with radius R > π/2 with semicircular indents along the
real axis centered at ±π/2 with radius 1/R. Let γ− be the semicircular indent centered at −π/2 and let γ+ be the
semicircular indent centered at π/2. Similarly, let γ′ be the main semicircular arc. Now note that∫

γ

f =

∫ π/2−1/R

−π/2+1/R

f +

∫
γ+

f +

∫ R

π/2+1/R

f +

∫
γ′
f +

∫ −π/2−1/R

−R

f +

∫
γ−

f where f(z) =
eiz

z4 − (π/2)4
.

Now by the residue theorem we have that∫
γ

f = 2πiRes(f, iπ/2) = 2πi lim
z→iπ/2

eiz

(z + iπ/2)(z2 − (π/2)2)
= 4πi

(
exp(−π/2)

−iπ3

)
= − 4

π2
exp(−π/2).

Now note that ∣∣∣∣∫
γ′
f

∣∣∣∣ =
∣∣∣∣∣
∫ π

0

exp
(
iReiθ

)
R4e4iθ − (π/2)4

iReiθ dθ

∣∣∣∣∣ ≤ R

∫ π

0

exp(−R sin θ)

R4 − (π/2)4
dθ.

Since 0 ≤ θ ≤ π we have that exp(−R sin θ) ≤ 1. So,∣∣∣∣∫
γ′
f

∣∣∣∣ ≤ R

∫ π

0

exp(−R sin θ)

R4 − (π/2)4
dθ ≤ R

∫ π

0

dθ

R4 − (π/2)4
=

πR

R4 − (π/2)4
.

So we have that
∫
γ′ f → 0 as R → ∞. Similarly we have that

∫
γ−

f =

∫ 0

π

exp
(
−iπ/2 + ieiθ/R

)
(−π/2 + eiθ/R)4 − (π/2)4

· ie
iθ

R
dθ =

∫ −π/2+1/R

−π/2−1/R

exp(iu)

u4 − (π/2)4
du.

But now note that∫
γ−

f =

∫ −π/2+1/R

−π/2−1/R

exp(iu)

u4 − (π/2)4
du =

∫ −π/2+1/R

−π/2−1/R

cosu du

u4 − (π/2)4
+ i

∫ −π/2+1/R

−π/2−1/R

sinu du

u4 − (π/2)4
.

Similarly, ∫
γ+

f =

∫ π/2+1/R

π/2−1/R

exp(iu)

u4 − (π/2)4
du =

∫ π/2+1/R

π/2−1/R

cosu du

u4 − (π/2)4
+ i

∫ π/2+1/R

π/2−1/R

sinu du

u4 − (π/2)4
.

But note that ∫ π/2+1/R

π/2−1/R

sinu du

u4 − (π/2)4
= −

∫ −π/2−1/R

−π/2+1/R

sin(−u) du

(−u)4 − (π/2)4
= −

∫ −π/2+1/R

−π/2−1/R

sinu du

u4 − (π/2)4
.

Thus, ∫
γ−

f +

∫
γ+

f =

∫ π/2+1/R

−π/2−1/R

cosu du

u4 − (π/2)4
+

∫ π/2+1/R

π/2−1/R

cosu du

u4 − (π/2)4
=

∫ −π/2+1/R

−π/2−1/R

Re f +

∫ π/2+1/R

π/2−1/R

Re f.
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Note that this is purely a real valued integral. Now taking the real part of our integral summation yields

− 4

π2
exp(−π/2) =

∫
γ

Re f =

∫
γ′
Re f +Re

(∫
γ−

f +

∫
γ+

f

)
+

∫ −π/2−1/R

−R

Re f +

∫ π/2−1/R

−π/2+1/R

Re f +

∫ R

π/2+1/R

Re f.

Thus, by substituting the previous expression and noting that it is purely real, we have

− 4

π2
exp(−π/2) =

∫
γ′
Re f +

∫ −π/2−1/R

−R

Re f +

∫ −π/2+1/R

−π/2−1/R

Re f +

∫ π/2−1/R

−π/2+1/R

Re f +

∫ π/2+1/R

π/2−1/R

Re f +

∫ R

π/2+1/R

Re f

=

∫
γ′
Re f +

∫ R

−R

Re f.

Note that in the limit R → ∞ the term over γ′ vanishes, thus

− 4

π
exp(−π/2) =

∫
R
Re f =

∫
R

cosx dz

x4 − (π/2)4
.

Example 2.4.11 (Fall 2020, Problem 1). Evaluate the integral∫
R

cosx

1 + x+ x2
dx.

Solution. Note that
1 + x+ x2 =

(
x− (−1 + i

√
3)/2

)(
x− (−1− i

√
3)/2

)
.

Thus by taking γ as the semicircular contour centered at −1/2 with radius R >
√
3/2, we have by residue theorem∫

γ

eiz

1 + z + z2
dz = 2πi lim

z→(−1+i
√
3)/2

eiz

(z − (−1− i
√
3)/2)

=
2π exp(−i/2) exp

(
−
√
3/2
)

√
3

.

Note that∫
γ

cos z

1 + z + z2
dz = Re

(∫
γ

eiz

1 + z + z2
dz

)
= Re

(
2π exp(−i/2) exp

(
−
√
3/2
)

√
3

)
=

2π cos(1/2) exp
(
−
√
3/2
)

√
3

.

Now if we let z = Reiθ and dz = iReiθdθ to parametrize the arc (which we denote γ′), we have that∣∣∣∣∫
γ′

eiz

1 + z + z2
dz

∣∣∣∣ =
∣∣∣∣∣iR

∫ π

0

exp
(
iReiθ

)
1 +Reiθ +R2e2iθ

eiθ dθ

∣∣∣∣∣ ≤ R

∫ π

0

exp(−R sin θ)

|1 +Reiθ +R2e2iθ|
dθ.

Now note that for sufficently large R we have

R2−R−1 = R2−(
∣∣Reiθ

∣∣+1) ≤ R2−
∣∣Reiθ + 1

∣∣ = ∣∣R2 −
∣∣Reiθ + 1

∣∣∣∣ = ∣∣∣∣R2e2iθ
∣∣− ∣∣Reiθ + 1

∣∣∣∣ ≤ ∣∣1 +Reiθ +R2e2iθ
∣∣.

Thus because 0 ≤ θ ≤ π we have that exp(−R sin θ) ≤ 1 and thus∣∣∣∣∫
γ′

eiz

1 + z + z2
dz

∣∣∣∣ ≤ R

∫ π

0

exp(−R sin θ)

|1 +Reiθ +R2e2iθ|
dθ ≤ R

∫ π

0

dθ

R2 −R− 1
=

πR

R2 −R− 1
.

Now note that in the limit R → ∞ we have that this upper bound vanishes. So by the squeeze theorem, we know
that the integral over γ′ necessarily vanishes also. Since the integral with cos z over γ′ is merely the real part of the
above integral, we know this integral must also vanish. Thus because both limits exist and are finite, we have∫

R

cos z

1 + z + z2
dz = lim

R→∞

(∫
γ

cos z

1 + z + z2
dz −

∫
γ′

cos z

1 + z + z2
dz

)
= lim

R→∞

∫
γ

cos z

1 + z + z2
dz − lim

R→∞

∫
γ′

cos z

1 + z + z2
dz =

2π cos(1/2) exp
(
−
√
3/2
)

√
3

.
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2.5 Argument Principle

Theorem 2.5.1. If f is a meromorphic function inside some closed contour C, and f has no zeros or poles on C
itself, then we have

1

2πi

∮
C

f ′(z)

f(z)
dz = Z − P

where Z and P are the number of zeros and poles respectively of f inside C.

Remark. For any contour γ and meromorphic function f with no zeros or poles on γ, we loosely have that

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∆γ arg(f(z))

2π
.

(1) Example Problems: Argument Principle

Example 2.5.2 (Fall 2022, Problem 4). Let D be a domain in C and let f be a holomorphic function in D. Suppose
that Re(f) > 0. Prove that for any closed C1-piecewise smooth curve C,∮

C

f ′

f
dz = 0

Additionally, use the argument principle to prove that for any λ > 0, p(z) = z4+ iλz3 + 1 = 0 has exactly one
solution in the first quadrant.

Solution. Suppose that there exists z ∈ D such that f(z) = 0. Then Re(f(z)) = 0 as well which contradicts the
fact that Re(f) > 0. Thus f has no zeros on D. Additionally, f has no poles on D, as it is holomorphic. Thus by
the argument principle we know that

1

2πi

∮
C

p′

p
dz = Z − P = 0− 0 = 0. =⇒

∮
C

p′

p
dz = 0.

Noting that P (z) is holomorphic on the plane, we have by the argument principle that

1

2πi

∮
C

p′

p
dz = Z − P = Z

for any closed contour C. Now let C be the clockwise oriented quarter circle of radius R in the first quadrant. Let
γ1 be the path along the real axis between 0 → R, let γ2 be the path along the quarter circle of radius R centered
at 0 between R → iR, and let γ3 be the path along the imaginary axis between iR → 0. Note

Z =
1

2πi

∮
C

p′

p
dz =

1

2πi

(∫
γ1

p′

p
dz +

∫
γ2

p′

p
dz +

∫
γ3

p′

p
dz

)
=

∆γ1 arg(p(z)) + ∆γ2 arg(p(z)) + ∆γ3 arg(p(z))

2π

Now note that for x ∈ R we have

p(ix) = (ix)4 + iλ(ix)3 + 1 = x4 + λx3 + 1 ∈ R =⇒ ∆γ3 arg(p(z)) = 0.

It also follows from the above that

∆γ1
arg(p(z)) = arg(p(R))− arg(p(0)) = arg(p(R)) = arg(R4) + arg(1 + iλ/R+ 1/R4) = arg(1 + iλ/R+ 1/R4).

From this it is clear that in the limit R → ∞ we have that ∆γ1
arg(p(z)) = 0. Now for 0 ≤ θ ≤ π/2 note that

arg(p(Reiθ)) = arg(R4e4iθ) + arg(1 + iλ/(Reiθ) + 1/(R4e4iθ)) = 4θ + arg(1 + iλ/(Reiθ) + 1/(R4e4iθ)).

From this it is clear that in the limit R → ∞ we have that arg(p(Reiθ)) = 4θ. Thus in the limit R → ∞ we have
that ∆γ2

arg(p(z)) = 2π. Thus we have

lim
R→∞

Z = lim
R→∞

∆γ1
arg(p(z)) + ∆γ2

arg(p(z)) + ∆γ1
arg(p(z))

2π
=

0 + 2π + 0

2π
= 1.
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2.6 Biholomorphic Mappings

Lemma 2.6.1. The Cayley transform maps the upper-half plane to the unit disk.

f : H → D z 7→ z − i

z + i

Lemma 2.6.2. This Mobius transformation maps the disk to itself. For a ∈ D and 0 ≤ θ < 2π we have

f : D → D z 7→ eiθ
(

z − a

1− az

)
.

Note that f(a) = 0.

Lemma 2.6.3. This transformation take the strip S = {z ∈ C : |Im(z)| < 1} to the right half plane −iH.

f : S → −iH z 7→ exp(πz/2).

Lemma 2.6.4. Trigonometric functions can take the half-strip S+ = {z ∈ C : |Re(z)| < 1, Im(z) > 0} to H:

f : S+ → H z 7→ sin(πz/2).

Theorem 2.6.5 (Riemann Mapping). If U is a non-empty, simply connected subset of C that is not itself C, then
there exists a biholomorphic mapping f : U → D.

Theorem 2.6.6 (Caratheodory’s Theorem). If we have a conformal map f : D → U where U is simply connected
in C∪ {∞} and ∂U is a Jordan curve in C∪ {∞}, then there exists a continuous extension of f to g : D → U which
is also one-to-one.

(3) Example Problems: Biholomorphic Mappings

Example 2.6.7 (Spring 2023, Problem 3). Let D = {z ∈ C : |z| < 1} and A = {z ∈ C : 0 < arg z < 2π/5}. Find an
explicit biholomoprhism f : D → A.

Solution. Note that we have the biholomorphism

f : A → H z 7→ z5/2 with inverse f−1 : H → A z 7→ z2/5.

Likewise, recall the biholomorphism given by the Cayley transform

g : H → D z 7→ z − i

z + i
with inverse g−1 : D → H z 7→ i

(
1 + z

1− z

)
.

Composing biholomorphisms we have

g ◦ f : A → D z 7→ z5/2 − i

z5/2 + i
with inverse f−1 ◦ g−1 : D → A z 7→

(
i

(
1 + z

1− z

))2/5

.

Example 2.6.8 (Fall 2020, Problem 3). Construct a conformal map from S− := {z ∈ C : Re(z) < 0, 0 < Im(z) < 1}
to the upper-half plane such that it has a continuous extension to the closure of S− considered as a map to the
extended complex plane, and fixes 0. You may construct the map as a composition of elementary conformal maps.

Solution. Let S+ = {z ∈ C : |Re(z)| < 1, Im(z) > 0}, then we have the conformal map

f : S− → S+ z 7→ −1− 2zi.

We also have the elementary conformal map

g : S+ → H z 7→ sin(πz/2).

We also have the extremely esoteric conformal map

h : H → H z 7→ z + 1.

Note the composition

h ◦ g ◦ f : S− → H z 7→ 1 + sin

(
−π(1 + 2zi)

2

)
with (h ◦ g ◦ f)(0) = 0.

Noting that both S− and H are simply connected in C ∪ {∞} and that ∂S− and ∂H are Jordan curves in C ∪ {∞}
allows us to conclude via Caratheodory’s theorem that h ◦ g ◦ f admits a continuous extension from S− to H.
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Example 2.6.9 (Fall 2023, Problem 3). Does there exist a holomorphic surjection from D to C.

Solution. Yes, consider the inverse cayley transform

f : D → H such that z 7→ i

(
1 + z

1− z

)
.

Now for ε > 0 we have
g : H → H− iε such that z 7→ z − iε.

And finally, we square H− iε to map to the whole complex plane.

h : H− iε → C such that z 7→ z2.

Our holomorphic surjection is simply the composition of these maps where ϕ = h ◦ g ◦ f .

Example 2.6.10 (Spring 2024, Problem 4). Let c > 0 and

D = {|z| > 1, |z − c| < 1}, F (z) =
z − z1
z − z2

where z1, z2 ∈ C are the intersection points of the circles |z| > 1 and |z − c| = 1 , with Im z1 < 0 and Im z2 > 0.
Find the value of c such that F (D) is bounded by two rays with angle equal to π/3. Then find F (D).

Solution. Note that F (z1) = 0 and F (z2) = ∞. Now note that F is a conformal map, and thus preserves angles
(and similarly for F−1); so we have the geometry
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By simply examining the diagram, we note that the bottom angle of the triangle is also θ = π/3. Thus the double
hatched angles are also π/3, and we have an equilateral triangle between the centers of the circles and z1. Thus,
c = 1. Therefore z1 = (1− i

√
3)/2 and z2 = (1 + i

√
3)/2. Now note that when z′ = 1 we have

F (z′) =
z′ − z1
z′ − z2

=
1− (1− i

√
3)/2

1− (1 + i
√
3)/2

=
(1 + i

√
3)/2

(1−
√
3)/2

=
eπi/3

e−πi/3
= e2πi/3 and |z′| = 1.

Thus because F (z1) = 0, F (z′) = e2πi/3, and F (z2) = ∞, this arc of the circle centered at 0 maps to the ray
arg z = 2π/3. Now note that when z′′ = (3 + i

√
3)/2 we have

F (z′′) =
z′′ − z1
z′′ − z2

=
(3 + i

√
3)/2− (1− i

√
3)/2

(3 + i
√
3)/2− (1 + i

√
3)/2

= 1 + i
√
3 = 2eπi/3 and |z′′ − c| = 1.

Thus because F (z1) = 0, F (z′′) = 2eπi/3, and F (z2) = ∞, this arc of the circle centered at c maps to the ray
arg z = π/3. Thus we have that

f(D) = {z ∈ C : π/3 < arg z < 2π/3}.
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2.7 Schwarz Lemma

Lemma 2.7.1. Let f : D → D be a holomorphic map such that f(0) = 0. Then it follows that |f(z)| ≤ |z| for z ∈ D
and |f ′(0)| ≤ 1.

Corollary 2.7.2. Furthermore, under the same conditions, if |f(z)| = |z| for some z ̸= 0 or if |f ′(0)| = 1, then
f(z) = az for some z ∈ ∂D.

(2) Example Problems: Schwarz Lemma

Example 2.7.3 (Spring 2022, Problem 4). Let f : D → D be a holomorphic function with two fixed points. Show
that f is precisely the identity map.

Solution. For the sake of notation let f(a) = a and f(b) = b for some distinct a, b ∈ D. Now we define the
biholomorphic map

g : D → D such that z 7→ z − a

1− az
.

Note that the inverse map is precisely

g−1 : D → D such that z 7→ z + a

1 + az
.

Now we define the holomorphic map h = g ◦ f ◦ g−1 : D → D. Note h(0) = g(f(g−1(0))) = g(f(a)) = g(a) = 0 and

h

(
b− a

1− ab

)
= g

(
f

(
g−1

(
b− a

1− ab

)))
= g(f(b)) = g(b) =

b− a

1− ab
.

Thus by the corollary to Schwarz lemma, we know that h(z) = cz for some c ∈ ∂D. But since

h

(
b− a

1− ab

)
=

b− a

1− ab
and a ̸= b,

we also know that h(z) = z. Thus,

z = h(z) = g(f(g−1(z))) =⇒ g(z) = g(f(g−1(g(z)))) = g(f(z)) =⇒ z = g−1(g(z)) = g−1(g(f(z))) = f(z).

Example 2.7.4 (Spring 2021, Problem 2). Let f : H → C be a holomorphic function such that |f(z)| ≤ 1 and
f(i) = 0. Prove that for z ∈ H that

|f(z)| ≤
∣∣∣∣z − i

z + i

∣∣∣∣.
Solution. Let us define the Cayley transform

g : H → D such that z 7→ z − i

z + i
.

Note that g(i) = 0, so g−1(0) = i. Now let h = f ◦ g−1 : D → C. Note that as before |h(z)| ≤ 1 and also h(0) = 0.
By Schwarz lemma we have that |h(z)| ≤ |z| for z ∈ D. By extension we have that for z ∈ H it follows that

|f(z)| =
∣∣f(g−1(g(z))

∣∣ = |h(g(z))| ≤ |g(z)| =
∣∣∣∣z − i

z + i

∣∣∣∣.
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2.8 Maximum Modulus Principle

Theorem 2.8.1. Suppose that Ω ⊂ C is a non-empty open connected subset and that f is a non-constant holomorphic
function on Ω. It then follows that f cannot attain a maximum in Ω.

Corollary 2.8.2. Suppose that Ω ⊂ C is a non-empty open connected subset with compact closure Ω. If f is
holomorphic on Ω and continuous on Ω, then

sup
z∈Ω

|f(z)| ≤ sup
z∈∂Ω

|f(z)|.

(4) Example Problems: Maximum Modulus Principle

Example 2.8.3 (Spring 2023, Problem 4). Let S := {z = x + iy : −1 ⩽ x ⩽ 1} and let f : S → C be a bounded
continuous function that is holomorphic on the interior of the strip S. For −1 ⩽ x ⩽ 1 let M(x) := supy∈R |f(x+ iy)|.

• Suppose M(1),M(−1) ⩽ 1. Prove that |f(z)| ⩽ 1 for any z ∈ S.

• Suppose M(1),M(−1) are arbitrary. Prove that M(0)2 ⩽ M(−1) · M(1) by deducing it from part 1 of this
problem.

Solution. Let ε > 0 and let
Fε(z) = f(z) · eεz

2

.

Since f(z) is bounded there exists M such that |f(z)| ≤ M for all z ∈ S. Now note that

|Fε(z)| = |f(z)| · exp
(
Re(εz2)

)
= |f(z)| · exp

(
ε (x2 − y2)

)
≤ M · exp

(
ε (1− y2)

)
.

Thus it follows that as |z| → ∞ we have that |Fε(z)| → 0. Let Sy = {z ∈ S : |Im(z)| ≤ y} and note that because of
this limiting condition, it follows that for every ε > 0 there exists y sufficiently large such that supz∈∂Sy |Fε(z)| ≤ 1
and |Fε(z)| < 1 for all z ∈ S \ Sy. Thus by the maximum modulus principle we have that

sup
z∈Sy

|Fε(z)| ≤ sup
z∈∂Sy

|Fε(z)| ≤ 1.

Since |Fε(z)| < 1 for all z ∈ S \Sy also, we have that supz∈S |Fε(z)| ≤ 1. Now when ε → 0 we have supz∈S |f(z)| ≤ 1.
Thus for all z ∈ S we have that |f(z)| ≤ 1.

SECOND PART???

Example 2.8.4 (Fall 2023, Problem 4). Let z1, z2, . . . , zn be points on the unit circle in the complex plane. Prove
that there exists a point z on the unit circle such that

n∏
k=1

|z − zk| = 1.

Solution. Let us define the holomorphic function f(z) =
∏n

k=1 z − zk on D and note that it is continuous on D.
Note that f(0) = 1. So, by the maximum modulus principle, we have that

1 ≤ sup
z∈D

|f(z)| ≤ sup
z∈∂D

|f(z)|.

So there exists z0 ∈ ∂D such that 1 ≤ |f(z0)|. Now note that |f(z1)| = 0. Since f is continuous when parametrized
over the unit circle, by the IVT we have that there must exist a point z ∈ ∂D such that |f(z)| = 1 as desired.

Example 2.8.5 (Fall 2021, Problem 3). Let D0 = {z ∈ C : 0 < |z| < 1} and f : D0 → C be holomorphic on D0 and
satisfy |f(z)| ≤ log(1/|z|) for all z ∈ D0. Prove that f ≡ 0 on D

Solution. Let g(z) = zf(z) and note that |g(z)| ≤ |z| log(1/|z|). Note

lim
x→0

x log(1/x) = lim
x→0

log(1/x)

1/x
= lim

x→0

−1/x

−1/x2
= lim

x→0
x = 0.

Thus we have that |g(z)| → 0 as |z| → 0. Thus by the maximum modulus principle g(z) must attain its maximum
on ∂D0, but is necessarily 0 on ∂D0. So we have that g(z) ≡ 0 on D0 as thus f(z) ≡ 0 on D0.
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Example 2.8.6 (August 2020, Problem 5). Let f be holomorphic on a neighborhood of the closed unit disc centered
at the origin. Assume that |f(z)| = 1 if |z| = 1, and is not a constant on the disc. Prove that there exist a positive
integer k, points α1, . . . , αn in the open unit disc, positive integers m1, . . . ,mn, and a complex number β with |β| = 1
such that

f(z) = β

n∏
k=1

(
z − αk

1− αkz

)mk

for all z in the unit disc.

Solution. We know that f must have finitely many zeros on the disk by the identity theorem. So let a1, . . . , an be
the zeros of f with multiplicities m1, . . . ,mn. First note that when |z| = 1 we have

|B(z; ak,mk)|2 = B(z; ak,mk)B(z; ak,mk) =

(
z − ak
1− akz

)mk
(

z − ak
1− akz

)mk

=

(
|z|2 − akz − akz + |ak|2

1− akz − akz + |ak|2 · |z|2

)mk

=

(
1− akz − akz + |ak|2

1− akz − akz + |ak|2

)mk

= 1.

Thus |B(z; ak,mk)|2 = 1 and so |B(z; ak,mk)| = 1 when |z| = 1. Now note that by extension∣∣∣∣ f(z)∏n
k=1 B(z; ak,mk)

∣∣∣∣ = 1 when |z| = 1.

Additionally, this function must never vanish on D by construction. Thus by the minimum modulus principle, this
function must be a constant of absolute value 1, denote this constant β. Thus

f(z)∏n
k=1 B(z; ak,mk)

= β =⇒ f(z) = β

n∏
k=1

B(z; ak,mk) = β

n∏
k=1

(
z − ak
1− akz

)mk

.
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2.9 Mean Value Theorem

Theorem 2.9.1. If u is a harmonic function on U and B(a, r) ⊂ U , then we have that

u(a) =
1

2π

∫ 2π

0

u(a+ reiθ) dθ.

(1) Example Problems: Mean Value Theorem

Example 2.9.2 (Spring 2022, Problem 3). Suppose f(z) is an entire function such that
∫∫

C |f ′(z)|2 dx dy < ∞.
Show that f is constant.

Solution. First we will show a corollary of the MVT:

u(a) =
1

πr2

∫∫
B(a,r)

u(x, y) dx dy.

Let a = x′ + iy′ and note using Jacobians we have

1

πr2

∫∫
B(a,r)

u(x, y) dx dy =
1

πr2

∫ r

0

∫ 2π

0

u(x′ + r′ cos θ, y′ + r′ sin θ) · det
(
cos θ −r′ sin θ
sin θ r′ cos θ

)
dθ dr′.

Simplifying and rearranging we have

1

πr2

∫∫
B(a,r)

u(x, y) dx dy =
1

πr2

∫ r

0

r′
∫ 2π

0

u(x′ + r′ cos θ, y′ + r′ sin θ) dθ dr′.

Applying the MVT this simplifies to

1

πr2

∫∫
B(a,r)

u(x, y) dx dy =
2u(a)

r2

∫ r

0

r′ dr′ = u(a).

|f ′(z)|2 is a subharmonic function; thus, for all a ∈ C and r > 0 we have

|f ′(a)|2 ≤ 1

πr2

∫∫
B(a,r)

|f ′(z)|2 dx dy.

Letting r → ∞ since the integral must be finite, we have that the r−2 term forces the inequality |f ′(a)|2 ≤ 0 which
implies that f ′(a) = 0 everywhere. Thus the function is constant.
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(2) Other Problems

Example 2.9.3 (Spring 2023, Problem 5). Suppose that f is an entire function satisfying the functional equation

f(f(z)) = c f(z) + z (1− c)

for some fixed c ̸= 1. Show that f(z) is linear, you may use Picard’s theorem.

Solution. Note that by taking the derivative of both sides

f(f(z)) = c f(z) + z (1− c) =⇒ f ′(z) f ′(f(z)) = c f ′(z) + 1− c.

If there exists z such that f ′(z) = 0, then by the above we have that c = 1 which immediately yields a contradiction.
Thus f is non-constant. Thus by Picard’s little theorem we know that f(C) is either C or C \ {a} for some a ∈ C.
However, by the uniformization theorem, we know that there does not exist any conformal map C → C \ {a}. Thus
f(C) = C, and we know the automorphisms of C are of the form az + b.

Example 2.9.4 (Spring 2021, Problem 4). Let f : D → C be holomorphic and suppose there is an open set U whose
closure U ⊂ D is in the disk, such that f is injective on U . Must there exist an open set W with Ū ⊂ W ⊂ D such
that f is injective on W ? If so, prove your answer, and if not, provide a counterexample. (Here D is the unit disk,
D = {z ∈ C : |z| < 1}.

Solution. This is false, consider the following counterexample. Let a ∈ D, now let f(z) = (z − a)2 and choose the
domain U = {z ∈ D : |z| < |a|}. Now note that

0 = f ′(z) = 2z − 2a =⇒ z = a.

Thus f is injective on U since a ̸∈ U ; but, f is not injective on U since a ∈ U . So for U ⊂ W ⊂ D, f cannot be
injective on W because a ∈ W .
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