Name:	
Email:	

Math Club: Biweekly Contest Week Four

Release Date: March 27, 2024

Instructions: Solve the following problem as best you can. The first student to submit the correct solution via email to tamumathcontest@gmail.com or to Jeremy Kubiak in Blocker 336D (with time stamp) wins!

Problem 1. Let S(n) denote the sum of the digits of a positive integer n. Find all solutions to

$$S(n) + S(S(n)) + S(S(S(n))) + S(S(S(S(n)))) + S(S(S(S(n)))) + S(S(S(S(n)))) + S(S(S(S(n)))) + S(S(S(n))) + S(S(n)) +$$

Explain your answer.

Solution. There exists a positive integer m and integers $0 \le a_k < 10$ such that $n = \sum_{k=0}^m a_k \cdot 10^k$. This is merely the base-10 expansion of n. Now note that we have $S(n) = \sum_{k=0}^m a_k$. Thus we have

$$n \equiv \sum_{k=0}^{m} a_k \cdot 10^k \equiv \sum_{k=0}^{m} a_k \equiv S(n) \bmod 3.$$

Inductively we have that

$$S(n) \equiv S(S(n)) \equiv \ldots \equiv S(S(S(S(S(n))))) \mod 3.$$

Suppose there exists a solution n to our equation, then by the above we have that

$$0 \equiv 6 \cdot S(n) \equiv 2024 \equiv 2 \mod 3.$$

But this is a contradiction; thus, we can not have a solution.