Name:	
Email:	

Math Club: Biweekly Contest Week Three

Release Date: February 28, 2024

Instructions: Solve the following problem as best you can. The first student to submit the correct solution via email to tamumathcontest@gmail.com or to Jeremy Kubiak in Blocker 336D (with time stamp) wins!

Problem 1. Find the solution set to the equation

$$[x]^7 + \{x\}^7 = x^7$$
 where $\{x\} = x - [x]$.

Solution. Let x = n + r where $n = |x| \in \mathbb{Z}$ and $r = \{x\} \in [0, 1)$. Note that

$$0 = x^{7} - \lfloor x \rfloor^{7} - \{x\}^{7} = (n+r)^{7} - n^{7} - r^{7}$$
$$= 7n^{6}r + 21n^{5}r^{2} + 35n^{4}r^{3} + 35n^{3}r^{4} + 21n^{2}r^{5} + 7nr^{6}$$
$$= 7nr(n+r)(n^{2} + nr + r^{2})^{2}.$$

Thus implies that either n = 0, r = 0, n + r = 0, or $n^2 + nr + r^2 = 0$.

- Note that if n = 0 then $r \in [0, 1)$ and $x \in [0, 1)$ is a solution.
- Additionally, if r = 0 then $n \in \mathbb{Z}$ and $x \in \mathbb{Z}$ is a solution.
- Note that because $n \in \mathbb{Z}$ and $r \in [0,1)$ it is impossible for n+r=0 unless n=0 and r=0.
- Note that $n^2 + nr + r^2 = (n + r/2)^2 + 3r^2/4$. Thus if $n^2 + nr + r^2 = 0$ then n = 0 and r = 0.

So our solution set is $x \in \mathbb{Z} \cup [0, 1)$.