Name: _____Email: _____

Math Club: Biweekly Contest Week Two

Release Date: February 14, 2024

Instructions: Solve the following problem as best you can. The first student to submit the correct solution via email to tamumathcontest@gmail.com or to Jeremy Kubiak in Blocker 336D (with time stamp) wins!

Problem 1. Suppose $a \neq -1$. If $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) + a \cdot f(1 - 1/x) = x$, then show

$$\lim_{x \to \pm \infty} \left(x - (1 + a^3) \cdot f(x) \right) = a.$$

Solution. Let g(x) = 1 - 1/x and note that $(g \circ g \circ g)(x) = x$. Thus note that we have

$$f(x) = x - a \cdot f(g(x))$$

$$f(g(x)) = g(x) - a \cdot f((g \circ g)(x))$$

$$f((g \circ g)(x)) = (g \circ g)(x) - a \cdot f(x).$$

So we have that

$$f(x) = x - a \cdot f(g(x)) = x - a \cdot (g(x) - a \cdot f((g \circ g)(x)))$$
$$= x - a \cdot g(x) + a^2 \cdot f((g \circ g)(x)).$$

And by extension

$$f(x) = x - a \cdot g(x) + a^{2} \cdot f((g \circ g)(x)) = x - a \cdot g(x) + a^{2} \cdot ((g \circ g)(x) - a \cdot f(x))$$
$$= x - a \cdot g(x) + a^{2} \cdot (g \circ g)(x) - a^{3} \cdot f(x).$$

We conclude that whenever $x \neq 0$ or 1,

$$(1+a^3) f(x) = x - a \cdot g(x) + a^2 \cdot (g \circ g)(x) = x - a \cdot \frac{x-1}{x} + a^2 \cdot \frac{1}{1-x}.$$

Thus we can evaluate the limit

$$\lim_{x \to \pm \infty} \left(x - (1 + a^3) \cdot f(x) \right) = \lim_{x \to \pm \infty} \left(a - \frac{a}{x} - \frac{a^2}{1 - x} \right) = a.$$