Name: _____Email: _____

Math Club: Biweekly Contest Week One

Release Date: January 31, 2024

Instructions: Solve the following problem as best you can. The first student to submit the correct solution via email to tamumathcontest@gmail.com or to Jeremy Kubiak in Blocker 336D (with time stamp) wins!

Problem 1. Suppose that x, y, and z are positive real numbers such that

$$x^{2} + xy + y^{2} = 247$$
, $y^{2} + yz + z^{2} = 433$, and $z^{2} + zx + x^{2} = 309$.

Compute the value of xy + yz + zx and show your work.

Solution. This is secretly a geometry problem. Construct the triangle ABC with the side-lengths $\overline{AB} = \sqrt{247}$, $\overline{BC} = \sqrt{433}$, and $\overline{CA} = \sqrt{309}$. Now choose a point P inside triangle ABC such that $\overline{AP} = x$, $\overline{BP} = y$, and $\overline{CA} = z$. By the law of cosines we have that

$$\cos(\angle APB) = \frac{x^2 + y^2 - 247}{2xy} = -\frac{xy}{2xy} = -\frac{1}{2}$$
$$\cos(\angle BPC) = \frac{y^2 + z^2 - 433}{2yz} = -\frac{yz}{2yz} = -\frac{1}{2}$$
$$\cos(\angle CPA) = \frac{z^2 + x^2 - 309}{2zx} = -\frac{zx}{2zx} = -\frac{1}{2}$$

Thus $\angle APB = \angle BPC = \angle CPA = 2\pi/3$. Now using the sine area formula for a triangle we have

$$\operatorname{Area}(\triangle APB) = \frac{xy}{2} \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{4} xy$$
$$\operatorname{Area}(\triangle BPC) = \frac{yz}{2} \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{4} yz$$
$$\operatorname{Area}(\triangle CPA) = \frac{zx}{2} \sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{4} zx.$$

Now we have by Heron's formula

Area(
$$\triangle ABC$$
) = $\sqrt{s(s-a)(s-b)(s-c)}$

where s=(a+b+c)/2 and $a=\overline{AB}$, $b=\overline{BC}$, and $c=\overline{CA}$. Distributing terms we have

$$Area(\triangle ABC) = \frac{1}{4} \sqrt{2 (a^2b^2 + b^2c^2 + c^2a^2) - a^4 - b^4 - c^4}$$

$$= \frac{1}{4} \sqrt{2 (247 \cdot 433 + 433 \cdot 309 + 309 \cdot 247) - 247^2 - 433^2 - 309^2}$$

$$= \frac{1}{4} \sqrt{2 \cdot 317071 - 61009 - 187489 - 95481} = \frac{1}{4} \sqrt{290163} = \frac{311\sqrt{3}}{4}.$$

But also note that

$$\frac{311\sqrt{3}}{4} = \operatorname{Area}(\triangle ABC) = \operatorname{Area}(\triangle APB) + \operatorname{Area}(\triangle BPC) + \operatorname{Area}(\triangle CPA) = \frac{\sqrt{3}}{4}\left(xy + yz + zx\right).$$
 So $xy + yz + zx = 311$.