Name:	
Email:	

Math Club: Biweekly Contest Week Four

Release Date: October 18, 2023

Instructions: Solve the following problem as best you can. The first student to submit the correct solution via email to tamumathcontest@gmail.com or to Jeremy Kubiak in Blocker 336D (with time stamp) wins!

Problem 1. Let $P=(x_p,y_p)$ and $Q=(x_q,y_q)$ be two solutions to the equation $y^2=x^3+17$ such that $P\neq Q$ and $x_p\neq x_q$. We define an operation $P\star Q$; construct a line interpolating P and Q, this line will intersect $y^2=x^3+17$ at a third point $P\neq R\neq Q$ with $R=(x_r,y_r)$. We let

$$P \star Q = (x_r, -y_r)$$
, note this is the reflection of R over the x -axis.

Let
$$A = (-2, -3)$$
 and $B = (4, 9)$, compute $C = (A \star B) \star B$.

Hint. Geometrically your construction should look roughly as follows

with $(A \star B) \star B$ lying on the red curve out of range of the displayed graph.

Solution. We compute the line interpolating A and B. Note that this line is of the form $y = \lambda x + \nu$ and A and B are solutions to this equation. This gives us a matrix which can be sent to RREF form to compute λ and ν ,

$$\begin{pmatrix} -2 & 1 & -3 \\ 4 & 1 & 9 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \implies \lambda = 2 \quad \text{and} \quad \nu = 1.$$

Now we would like to find the intersection of the line y = 2x + 1 and the elliptic curve $y^2 = x^3 + 17$.

$$(2x+1)^2 = x^3 + 17 \implies 4x^2 + 4x + 1 = x^3 + 17 \implies 0 = x^3 - 4x^2 - 4x + 16.$$

Note that by our construction A and B are in the intersection set of y = 2x + 1 and $y^2 = x^3 + 17$. So it follows that the x-corrdinates of both A and B should factor from the above cubic,

$$0 = x^3 - 4x^2 - 4x + 16 = (x+2)(x-2)(x-4).$$

Thus our new intersection point has x-coordinate x = 2 and y-coordinate y = 2(2) + 1 = 5. Reflecting this across the x-axis we have that A * B = (2, -5).

Now we compute the line interpolating A*B and B. Note that this line is of the form $y=\lambda x+\nu$ and A and B are solutions to this equation. This gives us a matrix which can be sent to RREF form to compute λ and ν ,

$$\begin{pmatrix} 2 & 1 & -5 \\ 4 & 1 & 9 \end{pmatrix} \xrightarrow{RREF} \begin{pmatrix} 1 & 0 & 7 \\ 0 & 1 & -19 \end{pmatrix} \implies \lambda = 7 \quad \text{and} \quad \nu = -19.$$

Now we would like to find the intersection of the line y = 7x - 19 and the elliptic curve $y^2 = x^3 + 17$.

$$(7x - 19)^2 = x^3 + 17 \implies 49x^2 - 266x + 361 = x^3 + 17 \implies 0 = x^3 - 49x^2 + 266x - 344.$$

Note that by our construction A*B and B are both in the intersection set of y=7x-19 and $y^2=x^3+17$. So it follows that the x-coordinates of both A*B and B should factor from the above cubic,

$$0 = x^3 - 49x^2 + 266x - 344 = (x - 2)(x - 4)(x - 43).$$

Thus our new intersection point has x-coordinate x=43 and y-coordinate y=7(43)+1=282. Reflecting this across the x-axis we have that C=(A*B)*B=(43,-282).