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Math Club: Biweekly Contest Week One

Release Date: August 30, 2023
Instructions: Solve the following problem as best you can. The first student to submit the correct
solution via email to tamumathcontest@gmail.com or to Jeremy Kubiak in Blocker 336D (with time
stamp) wins!

Problem 1. Place two points A and B such that
∣∣AB∣∣ = 1. Now trisect the segment AB to create

points P and Q. Draw the following three circles:

1. A circle of radius 1/3 centered at A,

2. A circle of radius 2/3 centered at B,

3. A circle of radius 1 centered at Q.

A fourth circle; centered at a point C, can be drawn such that it is externally tangent to the circles
centered at A and B and internally tangent to the circle centered at Q.

After this construction; fill in the shaded areas as shown. What fraction of the circle centered at
Q is shaded?
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Solution. This is a simple application of Descartes’ Theorem to find the radius of circle C. We have,(
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Note that the negative sign −1/rQ indicates the internal tangency of the other circles to Q.
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Substituting our values we get(
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Finding a common denominator we have that

49r2C + 28rC + 4

4r2C
=

98r2C + 8

4r2C
=⇒ 0 = 49r2C − 28rC + 4 = (7rC − 2)2 =⇒ rC = 2/7.

Now we can compute the fraction of the shaded area as follows,

π(r2Q − r2A − r2B − r2C)

πr2Q
=

π(1− 1/9− 4/9− 4/49)

π
=
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.


