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Introduction

The generalized Dedekind sum below is first derived in [2].

Definition 1. Let χ1 and χ2 be primitive Dirichlet characters with respective conductors q1 and
q2 greater than 1 such that χ1χ2(−1) = 1, and let γ =

(
a b
c d

)
∈ Γ0(q1q2).

Sχ1,χ2

(
a b
c d

)
=

c∑
j=1

q1∑
i=1

(
χ2(j)χ1(i)B1

(j
c

)
B1

(n
q1

+
aj

c

))
.

This generalized Dedekind sum exhibits a particularly useful crossed homomorphism property.

Lemma 1. Let γ1, γ2 ∈ Γ0(q1q2). Then

Sχ1,χ2(γ1γ2) = S(γ1) + ψ(γ1)S(γ2)

Remark. Note ψ(γ) is trivial if γ ∈ Γ1(q1q2), so Sχ1,χ2 may be viewed as being an element of
Hom(Γ1(q1q2),C).

General Preliminaries

In this section we will define some general group theoretic definitions and results which will aid in
the construction of the algorithm. For the rest of this subsection, we let G be a finitely generated group
and H be a subgroup of G. We begin by defining right transversals and some associated notation.

Definition 2.We say T is a right transversal of H in G if each right coset of H in G contains
exactly one element of T . Moreover, T must contain the identity.

Definition 3.Given a right transversal T of H in G, a right coset representative function for T is
a mapping: G→ T via g 7→ g, where g is the unique element in T such that Hg = Hg.

We define a function which plays a critical role in our algorithm.

Definition 4.Given a right transversal of H in G and a, b ∈ G, we define

U(a, b) = ab(ab)−1.

Using this we define a rewriting process.

Theorem 1 (Modified Reidemeister Rewriting Process).Given a right transversal of H in G, let
G = ⟨g1, · · · , gn⟩. Let h = g

a1
q1 g

a2
q2 · · · g

ar
qr ∈ H (where ai ∈ Z̸=0) be a word in powers of the gi.

Define the mapping τ of the word h by

τ (h) = U(p1, g
a1
q1 )U(p2, g

a2
q2 ) · · ·U(pr, g

ar
qr ),

where
pk = g

a1
q1 g

a2
q2 · · · g

ak−1
qk−1

.

Then τ (h) = h, for all h ∈ H.

Specific Preliminaries

Let us now consider the subgroup Γ1(N) of SL2(Z).

Definition 5. Let

S =

(
0 −1
1 0

)
, T =

(
1 1
0 1

)
.

The following lemma is well known.

Lemma 2 (Matrix Decomposition in SL2(Z) [1, Theorem 1.1]).We know

SL2(Z) = ⟨S, T ⟩.

More specifically, one can decompose any matrix M ∈ SL2(Z) into the following form:

M = ±T a1ST a2S . . . T ak−1ST ak.

Note that −I = S2.

We develop a property of U -functions on the Γ1(N) congruence subgroup of SL2(Z).

Lemma 3. Let a = qN + r for 0 ≤ r < N and let M ∈ SL2(Z). Given a right transversal of
Γ1(N) in SL2(Z),

U
(
M, T a

)
= Uq

(
M,TN

)
U
(
M, T r

)
.

Performance Comparison

We give some experimental data comparing the speed of our algorithm to that which uses Definition 1.

Example 1. Consider Γ0(28). Let χ1 be the primitive Dirichlet character with conductor q1 = 4, and let
χ2 be the primitive Dirichlet character with conductor q2 = 7 such that χ2(3) = exp(2πi(5/6)). We let
γ =

(
a b
c d

)
where c = 28k, 0 < a < c, and gcd(a, c) = 1. We choose b and d such that the exponent ar

is 0 after applying Lemma 2. We compute the Dedekind sum Sχ1,χ2(γ) of all matrices that satisfy the
conditions, and graph the logarithm of the average time it takes to compute each k.

Note that the performance of the algorithm always exceeded that of the definition for this pair of characters.

Example 2. Now we present an example for a large matrix. Consider Γ0(35). Let χ1 be the primitive
Dirichlet character with conductor q1 = 5 such that χ1(2) = −i, and let χ2 be the primitive Dirichlet
character with conductor q2 = 7 such that χ2(3) = exp(2πi(1/3)). Let γ =

(
46741638 43234369
43234205 39990117

)
. Comput-

ing Sχ1,χ2(γ) by Definition 1 takes 5.531 ∗ 104 seconds (around 15 hours), whereas it takes 5.128 ∗ 10−2

seconds using our algorithm.

The Algorithm

Precomputation

First, we find a right transversal TΓ0 of Γ1(N) in Γ0(N) and a right transversal TSL2(Z) of Γ1(N) in

SL2(Z). Using these we compute the set

U = {U(t, T i) : t ∈ TSL2(Z), 1 ≤ i ≤ N} ∪ {U(t, Sk) : t ∈ TSL2(Z), 0 ≤ k ≤ 2}.

Finally, we compute the Dedekind sums Sχ1,χ2(TΓ0) and Sχ1,χ2(U) using Definition 1.

Main Computation

We write γ0 = γ1g, where γ1 ∈ Γ1(N) and g ∈ TΓ0. Let g 7→ g denote the right coset representative
function uniquely described by TSL2(Z) per Definition 3. By Lemma 1,

Sχ1,χ2(γ0) = Sχ1,χ2(γ1) + Sχ1,χ2(g).

Since g ∈ TΓ0, Sχ1,χ2(g) has been precomputed, so we are now only concerned about Sχ1,χ2(γ1). Using
Lemma 2, we write

γ1 = ±T a1ST a2S . . . T ak−1ST ak.

Using Theorem 1, we rewrite

τ (γ1) = U(p1, T
a1)U(p1T a1, S)U(p2, T

a2)U(p2T a2, S) · · ·U(pk, T ak)U(pkT ak,±I) = γ1, (1)

where
pk = T a1ST a2S . . . T ak−1S.

Now we apply Lemma 3. For each exponent of T , we write ai = qiN + ri with 0 ≤ ri < N . Then

U
(
pi, T

ai
)
= Uqi

(
pi, T

N)
U
(
pi, T

ri
)
. (2)

We apply the Dedekind sum to (2). By Lemma 1,

Sχ1,χ2
(
U
(
pi, T

ai
))

= qiSχ1,χ2

(
U
(
pi, T

N))
+ Sχ1,χ2

(
U
(
pi, T

ri
))
. (3)

Using (1) and (2) we can express γ1 as a product of elements in U . Applying Lemma 1 to Sχ1,χ2(τ (γ1))
and expanding via (3), we see that the Dedekind sum of each term is precomputed.

An Example

Fix Γ0(9). Let χ1 = χ2 be the primitive character modulo 3 with conductors q1 = q2 = 3. We want
to compute Sχ1,χ2(γ0) where

γ0 =

(
17 32
9 17

)
.

We compute a right transversal of Γ1(9) in Γ0(9) as

TΓ0 =
{(

1 0
0 1

)
,
(
5 1
9 2

)
,
(
7 3
9 4

)
,
(
2 1
9 5

)
,
(
4 3
9 7

)
,
(
8 7
9 8

)}
.

We compute a right transversal of Γ1(9) in SL2(Z)

TSL2(Z) =
{(

1 0
0 1

)
,
(
5 1
9 2

)
,
(
7 3
9 4

)
,
(
2 1
9 5

)
,
(
4 3
9 7

)
, · · · ,

(
5 8
8 13

)
,
(
5 3
8 5

)
,
(
7 13
8 15

)
,
(
7 6
8 7

)
,
(
1 2
8 17

)}
.

Now we compute the set

U = {U(t, T i) : t ∈ TSL2(Z), 1 ≤ i ≤ 9} ∪ {U(t, Sk) : t ∈ TSL2(Z), 0 ≤ k ≤ 2}.

Using Definition 1, we compute the Dedekind sums Sχ1,χ2(TΓ0) and Sχ1,χ2(U). Note γ0 = γ1g where

γ1 =
(−152 137
−81 73

)
∈ Γ1(9) and g =

(
8 7
9 8

)
∈ TΓ0.

Since g ∈ TΓ0, Sχ1,χ2(g) has been precomputed; thus, we only need concern ourselves with computing
Sχ1,χ2(γ1). By Lemma 2 we compute

γ1 = −T 1ST−2ST−2ST−2ST−2ST−2ST−2ST−2ST−11ST−1.

Now we apply Theorem 1 with all pi written in matrix forms.

τ (γ1) =U
((

1 0
0 1

)
, T 1)U(( 1 1

0 1

)
, S

)
U
((

1 −1
1 0

)
, T−2)U(( 1 −3

1 −2

)
, S

)
· · ·

· · ·U
((−15 −13

−8 −7

)
, T−11)U((−15 152

−8 81

)
, S

)
U
((

152 15
81 8

)
, T−1)U(( 152 −137

81 −73

)
,−I

)
= γ1.

Applying Lemma 3 to each term of the above product, we get the following computation.

U
((

1 0
0 1

)
, T 1

)
= U0(

(
1 0
0 1

)
, T 9)U(

(
1 0
0 1

)
, T 1) U

((
1 1
0 1

)
, S

)
= U(

(
1 0
0 1

)
, S)

U
((

1 −1
1 0

)
, T−2

)
= U−1(

(
1 8
1 9

)
, T 9)U(

(
1 8
1 9

)
, T 7) U

((
1 −3
1 −2

)
, S

)
= U(

(
1 6
1 7

)
, S)

... ...

U
((−15 −13

−8 −7

)
, T−11

)
= U−2(

(
1 1
1 2

)
, T 9)U(

(
1 1
1 2

)
, T 7) U

((−15 152
−8 81

)
, S

)
= U(

(
1 8
1 9

)
, S)

U
((

152 15
81 8

)
, T−1

)
= U−1(

(
8 7
9 8

)
, T 9)U(

(
8 7
9 8

)
, T 8) U

((
152 −137
81 −73

)
,−I

)
= U(

(
8 7
9 8

)
, S2)

Note that every term on the right hand side of these equalities are in the precomputed set U . Thus,
using Lemma 1 we know,

Sχ1,χ2(γ1) = 0 · Sχ1,χ2(U(
(
1 0
0 1

)
, T 9)) + Sχ1,χ2(U(

(
1 0
0 1

)
, T 1)) + Sχ1,χ2(U(

(
1 0
0 1

)
, S))

−1 · Sχ1,χ2(U(
(
1 8
1 9

)
, T 9)) + Sχ1,χ2(U(

(
1 8
1 9

)
, T 7)) + Sχ1,χ2(U(

(
1 6
1 7

)
, S))

...

−2 · Sχ1,χ2(U(
(
1 1
1 2

)
, T 9)) + Sχ1,χ2(U(

(
1 1
1 2

)
, T 7)) + Sχ1,χ2(U(

(
1 8
1 9

)
, S))

−1 · Sχ1,χ2(U(
(
8 7
9 8

)
, T 9)) + Sχ1,χ2(U(

(
8 7
9 8

)
, T 8)) + Sχ1,χ2(U(

(
8 7
9 8

)
, S2)).

Now, using the precomputed Dedekind sums, Sχ1,χ2(γ0) = Sχ1,χ2(γ1) + Sχ1,χ2(g) = 0.

Code & Full Text

The final condensed code necessary to use and implement this algorithm can be found and cloned
from this Github repository: https://github.com/prestontranbarger/NFDSFastComputation

Additionally, The full paper which summarizes and expounds upon the contents of this poster
can be found on the arXiv here: https://arxiv.org/abs/2210.01172
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