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Introduction

The generalized Dedekind sum below is first derived in [2].

Definition 1. Let x1 and xo be primitive Dirichlet characters with respective conductors q; and
qo greater than 1 such that xi1xo(—1) =1, and let v = (g g) c I'o(q1q9).

Sy 1x (‘; 2) = i: i (Xz(j)X1(i)B1 (%) B (2 + %‘7))

g=1 1=1 1

This generalized Dedekind sum exhibits a particularly useful crossed homomorphism property.

Lemma 1. Let 1,72 € T'g(q1g2). Then

Sxix2(1172) = S(71) + ¥ (71)S(72)

Remark. Note ¢(v) is trivial if v € I'1(q1q2), s0 Sy,,y, may be viewed as being an element of
Hom(I'1(q192), C).

(zeneral Preliminaries

In this section we will define some general group theoretic definitions and results which will aid in
the construction of the algorithm. For the rest of this subsection, we let G be a finitely generated group
and H be a subgroup of G. We begin by defining right transversals and some associated notation.

Definition 2. We say T is a right transversal of H i G if each right coset of H in G contains
exactly one element of T. Moreover, T must contain the identity.

Definition 3. Giwen a right transversal T of H in GG, a right coset representative function for 7T is
a mapping: G — T via g — ¢, where g is the unique element in | such that Hg = Hg.

We define a function which plays a critical role in our algorithm.
Definition 4. Given a right transversal of H in G and a,b € G, we define
Ula,b) = ab(ab) .
Using this we define a rewriting process.

Theorem 1 (Modified Reidemeister Rewriting Process). Given a right transversal of H in G, let

ayp ag r

G = (g1, ,9n). Let h = g¢lgqs---9q € H (where q €0) be a word in powers of the g;.
Define the mapping T of the word h by

7(h) = U(p1, 940)U (02, 9g3) - - Ulpr, 947,

where

__ap a ap—1
Pk =9¢19¢ " " Yqp_1 -

Then 7(h) = h, for all h € H.

Specific Preliminaries

Let us now consider the subgroup I'1(N) of SLy(Z).

s=(173) = (00)

The following lemma is well known.

Definition 5. Let

Lemma 2 (Matrix Decomposition in Slig(Z) [1, Theorem 1.2.4]). We know
SLo(Z) = (S, T).
More specifically, one can decompose any matric M € SLy(Z) into the following form:
M = £TST®2S . T%-18T%%
Note that —I = S2.
We develop a property of U-functions on the I'{(/N') congruence subgroup of SLo(Z).

Lemma 3. Let a = qN +1r for 0 < r < N and let M € SLy(7Z).
[1(N) in SLy(Z),

Given a right transversal of

UM, T =UY M, TV\U(M, T").

Performance Comparison

We compare the computational complexity of our algorithm against that of simply using Definition 1.
Fixing y1 and x9 as the primitive Dirichlet character modulo 3 (that is to say ¢ = ¢ = 3 and N = 9),
we compute the average time per matrix required to compute all Sy, v ( a 3) Wherec = Nk, 0 < a < c,
ged(a, ¢) = 1, and choose b and d such that aj. = 0 after applying Lemma 2.
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From the graph it is clear that the performance of the algorithm far exceeds that of the definition. This
illustrates that not only does this algorithm achieve a theoretical improvement over the definition, but

its implementation is practical even for relatively small matrices (for this particular set of characters this
threshold is around ¢ & 150).

The Algorithm

Precomputation

First, we find a right transversal Tp of I'1(V) in To(NV) and a right transversal Tg,(z) of I't (V) in
SLo(Z). Using these we compute the set

U={UtT):teSly(Z),1<i<NYU{U(t,S) :t€SLa(Z),0 <k <2},

Finally, we compute the Dedekind sums Sy, ,(7r,) and Sy, vo(7s1,,(z)) using Definition 1.

Main Computation

We write 79 = 719, where 1 € I'\(N) and g € Tr,. Let g — g denote the right coset representative
function uniquely described by TSLQ(Z) per Definition 3. By Lemma 1,

SXLXQ(’YO> = SX17X2<’71> + SX1,X2(9>-

Since g € Tr,, Syi,x2(9) has been precomputed, so now we are only concerned about Sy, y,(71). Using
Lemma 2, we write

v = £TNSTS . T%-15T%,
Using Theorem 1, we can rewrite
7(v1) = U@L, T"YU (p1 T4, S)U (p2, T*)U (p2192, S) - - - U (P, T*)U (py 1%, 1) = v, (1)

where
DL = TUSTYR2S | TW%-139,

Now we apply Lemma 3. For each exponent of T', we write a; = ¢;N + r; with 0 < r; < N. Then
U(p;, T%) = U% (5, T U (75, T™). (2)
We apply the Dedekind sum to (2). By Lemma 1,
_ . — N _ .
Sxie (U @i T%)) = 4iSx1x0 (U(pi»T )) + Sy (U@L T"))- (3)

Using (1) and (2) we can express 71 as a product of elements in /. Applying Lemma 1 to Sy, vo(7(71))
and expanding via (3), we see that the Dedekind sum of each term is precomputed.

An Example

Fix I'g(9). Let x1 = x2 be the primitive character modulo 3 with conductors q; = g9 = 3. We want
to compute Sy, y,(70) where

We compute a right transversal o

Tsiyzy=1(01) (33), (

Now we compute the set

o~ ™

U = {U(t,TZ> 1€ 7-SL2(Z)71 <1 < 9} U {U(t,Sk) 1€ 7'SL2<Z)7O < k< 2}
Using Definition 1, we compute the Dedekind sums Sy, y,(7r,) and Sy, y,(U). Note vy = 19 where
n= (2 ) en®  ad  g=(§{) €T,

Since g € Tpo, Sy1,v»(g) has been precomputed; thus, we only need concern ourselves with computing
Syi.x2(71). By Lemma 2 we compute

v = —TrST 28T 28T °ST 28T 2ST>ST ST~ "5~ 1

Now we apply Theorem 1 with all p; written in matrix forms.

() =U((§1). 7YU((§1).9)0((1 §). T)U((123).9) -
(29 29), T U9 &)U (2 ¥). T HU (¥ =F). —1) =m.
Applying Lemma 3 to each term of the above product, we get the following computation.

1),5) =U((}
»):5) = U((1

=

) 5)
):S)
U((= =7), 771 =U07((13). T)U((12). 7))  U((ZX &).9) =U((1§).9)

U((K29), 771 =07 (54), U ((58). %) U((5F =5). 1) = U((§4), 5°)

Note that every term on the right hand side of these equalities are in the precomputed set . Thus,
using Lemma 1 we know,

0
1
0
7

—2- Sy o (U((} %),Tj» + Sy (Ul
—1- SX1,X2<U<(8 g),T >) + SXLXQ(

Now, using the precomputed Dedekind sums, Sy, vo(70) = Sy1.x2(71) + Sy, vl

Code

). T) + Sy (U((
)7T8)) + Sy (U((5
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The final condensed code necessary to use and implement this algorithm can be found and cloned from
this Github repository:
https://github.com/prestontranbarger/NFDSFastComputation
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